

1 Article

2 **Integrated multitrophic aquaculture by-products with**
3 **high added value: the polychaete *Sabella spallanzanii***
4 **and the seaweed *Chaetomorpha linum* as sources of**
5 **fatty acids**6 **Loredana Stabili ^{1,2,*}, Ester Cecere ¹, Margherita Licciano ², Antonella Petrocelli ¹, Benedetto**
7 **Sicuro ³ and Adriana Giangrande ²**8 ¹ Institute of Water Research (IRSA) C.N.R, 74123 Taranto, Italy; loredana.stabili@irsa.cnr.it;
9 ester.cecere@irsa.cnr.it; antonella.petrocelli@irsa.cnr.it10 ² Department of Biological and Environmental Sciences and Technologies, University of Salento, Via
11 Provinciale Lecce-Monteroni, 73100 Lecce, Italy; margherita.licciano@unisalento.it;
12 adriana.giangrande@unisalento.it13 ³ Department of Veterinary Science, University of Turin, L.go Braccini 2 – 10095 Grugliasco (Torino), Italy;
14 benedetto.sicuro@unito.it

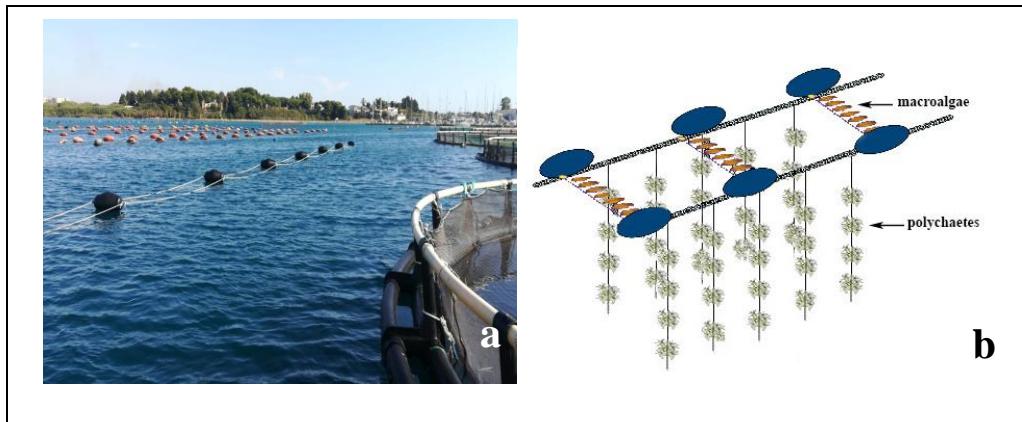
15 * Correspondence: loredana.stabili@irsa.cnr.it; Tel.: +39-0832-298971

16 Received: date; Accepted: date; Published: date

17 **Abstract:** Aquaculture expansion is limited by the waste negative environmental impact and the
18 need for alternative sources in the diet of reared fish. In this framework, for the first time, the
19 polychaete *Sabella spallanzanii* and the macroalga *Chaetomorpha linum* were included with fish in an
20 integrated multitrophic aquaculture system (IMTA) as bioremediators of aquaculture wastes. The
21 survival rates and biomass gain of both species reared/cultivated in the IMTA were evaluated as
22 well as their fatty acid profiles. Results showed that these organisms represent a natural source of
23 $\omega 3$ with the $\omega 6/\omega 3$ ratio lower than 1. On account of these noteworthy results and the high
24 biomass obtained as by-products, a preliminary study was performed employing both *S.*
25 *spallanzanii* and *C. linum* as new dietary supplements to feed different sized *Dicentrarchus labrax*.
26 Fish survival rate, biomass growth, and specific growth rate were determined resulting in no
27 significant differences between control and treated fishes. Histological analyses showed no
28 alterations of the stomach tunica mucosa and submucosa in treated fishes. The eco-friendly
29 approaches applied in the here realized IMTA system could guarantee the proper waste
30 management and the safety of rearing environment as well as the achievement of sustainable by-
31 products represented by the bioremediators *S. spallanzanii* and *C. linum* as sources of high added
32 value compounds beneficial to fish and human health.33 **Keywords:** *Chaetomorpha linum*; *Dicentrarchus labrax*; fish growth; fish nutrition; innovative meal;
34 *Sabella spallanzanii*
3536 **1. Introduction**37 Aquaculture currently provides almost 45% of the world's fisheries products and an increased
38 production up to almost 62% is expected by 2030 [1]. However, its expansion is limited by several
39 factors including the need to develop new alternative diets for reared fish and the reduction of the
40 impact of this activity on the marine environment. In this context, in recent years, a substantial
41 proportion of the research has been aimed at creating Integrated Multi-Trophic Aquaculture
42 (IMTA) systems. Here, the simultaneous rearing of fed species with bioremediators, which can use
43 for their growth the nutrient surplus, either inorganic (e.g., seaweeds or other aquatic vegetation) or

44 organic (e.g. deposit- and suspension-feeders), can allow the attainment of a sustainable
45 aquaculture [2]. Indeed, IMTA has the potential to produce economically exploitable biomasses and
46 provide biomitigative services at the same time, which can be beneficial for both ecosystem and
47 human health. In the light of a more sustainable aquaculture industry, the reduction of microbial
48 pollution, within farms, by the use of co-cultured living organisms, represents a challenge. Several
49 studies have shown that microbial contamination is reduced by some macroinvertebrates, in
50 particular filter-feeders, able to process large volumes of waters for their food requirements
51 efficiently retaining small particles including bacteria and thus acting as bioremediators [3–5].
52 Therefore, many of these macroinvertebrates, such as oysters, mussels, clams, polychaetes and
53 sponges, are suitable to restore the environment [6,5,7,8,9]. Bioremediation is also accomplished by
54 macroalgae used to reduce the nitrogen load, especially in ammoniacal form, produced by fish
55 metabolism and by the processes of decomposition of uneaten feed. Algae are commonly used in
56 co-culture with bivalves [10] although numerous variations to this basic scheme have been tested.
57 The farming of fish with bioremediators allows the conversion of the uneaten feed, wastes and
58 nutrients into biomass that can be removed and potentially managed as a valuable by-product.
59 Indeed, marine biomass indeed has an enormous potential as a source for nutritional, therapeutic
60 and functional ingredients, which may be used to make products for animal and human
61 consumption [11]. At present, the interest of the food industry related to aquaculture activity is
62 mainly focused on functional foods consisting of one or several functional ingredients of natural
63 origin able to further supply fish and human health benefit compared to the common conventional
64 food largely represented by fishmeal and fish oil [12,13]. The considerable content of high-quality
65 proteins with all the essential amino acids makes fishmeal a very good ingredient in feeds and not
66 substitutable with crop plants, in which proteins, conversely, lack most of these amino acids, such
67 as lysine, methionine, threonine, and tryptophan [14]. Fishmeal is also rich in lipids with
68 high-quality polyunsaturated ω -3 and ω -6 fatty acids (PUFAs), which are considered beneficial to
69 human cardiovascular health. Although marine fish represents the main source of eicosapentaenoic
70 acid (EPA) and docosahexaenoic acid (DHA) in the formulation of fish feeds, there is an urgent
71 need for an alternative and sustainable source of ω -3 long chain PUFAs on account of the depletion
72 of wild fish stocks and the pollution of the marine environment. Recently, Stabili et al. [15]
73 suggested that the very common Mediterranean polychaete *Sabella spallanzanii*, obtained as
74 by-product of bioremediation in aquaculture farms, could be employed as a dietary supplement for
75 fish nourishment on account of the high protein content as well as the presence of certain amino
76 acids that could improve palatability of the worms when included in fish feeds [15,14]. Indeed, *S.*
77 *spallanzanii* shows an interesting amino acids profile including lysine, methionine and threonine in
78 an amount comparable with fish meal other than some amino acids present in excess such as
79 glycine, arginine, cysteine, histidine, and glutamic acid.

80 In this framework, in the present paper the rearing/cultivation of the two bioremediators *S.*
81 *spallanzanii* and the macroalga *Chaetomorpha linum* in an integrated rearing fish system was realized,
82 for the first time, in an aquaculture farm along a coastal site in the Mediterranean Sea. Both these
83 bioremediation by-products were investigated as potential sources of lipids and essential fatty acids
84 to be employed as dietary supplements in fish feed. Among the marine invertebrates, polychaete
85 worms have been already used in aquaculture as feed [16–18]. In particular, nereids are commonly
86 known as omegaworms due to a high omega-3 (ω -3) polyunsaturated fatty acid (PUFA) content
87 [19]. Also macroalgae have been widely tested as dietary components in aquaculture plants [20–22].
88 Indeed, algae have been recognised as an obvious alternative source of these 'fish oil' fatty acids for
89 use in fish feeds [23], especially EPA, and DHA, and arachidonic acid (ARA). In this perspective, in
90 the present paper *S. spallanzanii* and *C. linum* biomass from the realized IMTA system were
91 employed to prepare an experimental innovative fish feed utilized for preliminary feeding assays
92 on the European sea bass *Dicentrarchus labrax* juveniles having market value especially in the
93 Mediterranean countries. Moreover, in order to obtain a first insight on the potential stomach
94 distress and damage of the epithelium due to the artificial feeding, histological analyses were
95 performed on the sea bass fish juveniles.


96

2. Results

97

2.1. Rearing/Cultivation of Bioremediators in IMTA

98 The monthly monitoring of the well-being and growth of seaweeds placed in the realized
 99 IMTA system (Figure 1) showed, during the 6 months of *C. linum* cultivation, interesting cultivation
 100 performances.

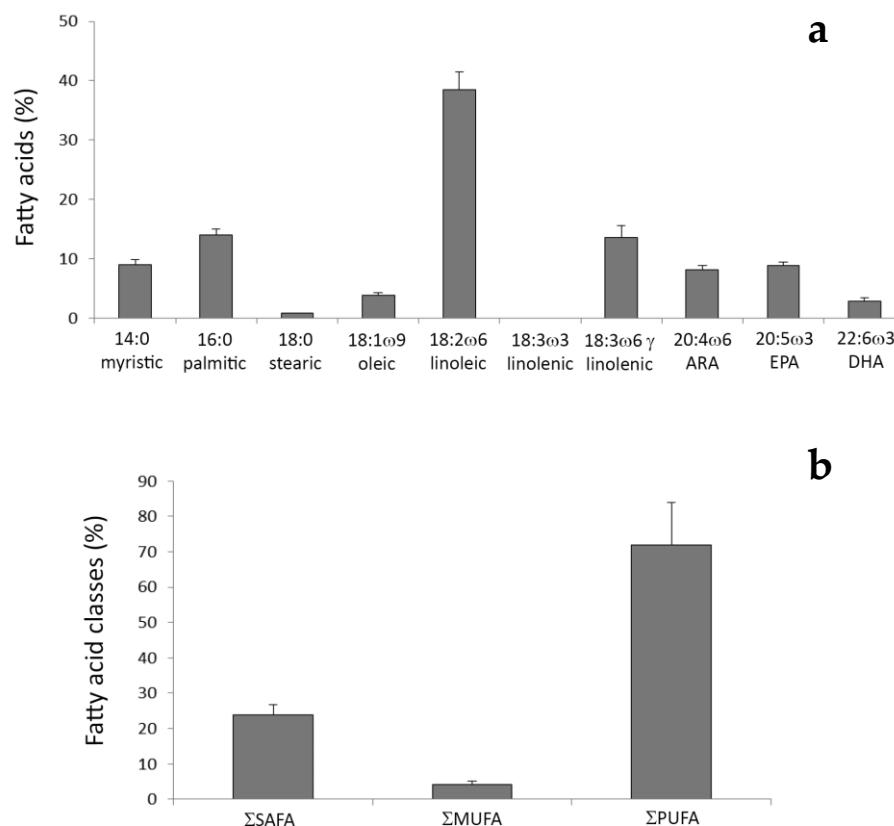
101 **Figure 1.** Rearing/cultivation of bioremediators s in the IMTA system: (a) Fish cages of the
 102 integrated multi-trophic aquaculture (IMTA) system in the Mar Grande of Taranto and long-line
 103 system; (b) Detail of the location of the bioremediators. As indicated by the arrows, the algae were
 104 horizontally arranged at 1 m of depth within a typical long-line system while polychaetes were
 105 placed vertically in polypropylene nets and placed around the fish cages.

106 High survival values and significant increases in biomass produced in short time intervals
 107 were indeed recorded. In particular, for *C. linum* a maximum SGR equal to 5% was calculated in a
 108 six month trial (Figure 2).

109 **Figure 2.** Cultivation trials of *Chaetomorpha linum* in the realized IMTA system: (a) and (b) Algae
 110 arranged in cultivation sockets; (c) *C. linum* located in the farm; (d) algae in net sacks hung at 1 m of
 111 depth within a typical long-line system.

112 In the IMTA system about 1428 specimens of *S. spallanzanii* were estimated in each collector for
 113 a total of 360,000 individuals in the whole system. After the 6 months of permanence the polychaete
 114 biomass was of 0.645 t (Figure 3).

Figure 3. Rearing trials of the polychaete *Sabella spallanzanii* in the integrated multi-trophic aquaculture (IMTA) system: (a) Specimen of *S. spallanzanii*; (b) Polychaetes arranged in polypropylene nets, which were hung vertically within a typical long-line system.


Within the first three months of rearing a biomass increase of about 79.3% was recorded, while in the last three months the biomass mean value increased with a further gain of 20.7%. As far as the survivorship of *S. spallanzanii* in the farming plant, worms showed a very low mortality rate during all months of observations. In particular, after the six months of rearing a mortality rate of about 15% was recorded.

In addition to the high production of bioremediators biomass, thanks to the realized IMTA system a restoration of the aquaculture rearing environment was achieved in terms of microbial contamination (i.e. total coliforms and *Escherichia coli*) and nutrient concentrations (i.e. phosphorous and nitrogen salts) (L. Stabili unpublished data).

2.2. Total Lipid and Fatty Acid Composition

The total mean lipid content of *C. linum* corresponded to 9.4 ± 2.4 mg/g dry weight (DW). In the case of *S. spallanzanii*, the mean lipid content, expressed on a wet weight basis (WW), was 8 ± 0.42 g/100 g WW.

The fatty acid profile of total lipids extracted from *C. linum* is shown in Figure 4. Polyunsaturated fatty acids (PUFAs) were the most abundant accounting for 71.97% of total FAs, and the most abundant PUFAs were the linoleic acid (18:2 ω -6), linolenic acid (18:3 ω -6 γ), the ω -3 eicosapentaenoic acid (EPA, 20:5 ω 3) and the ω -6 arachidonic acid (ARA, 20:4 n6) and accounting for 38.46%, 14%, 8.83%, and 8.14% of total FAs, respectively (Figure 4a). The ω -3 docosahexaenoic acid (DHA, 22:6 ω 3) represented the 2.91%. Saturated fatty acids (SAFAs) represented 23.83% of total fatty acids (FAs). Palmitic acid methyl ester (16:0) was the prevalent SAFA (14.03% of total FAs), followed by myristic acid methyl ester (14:0; 9% of total FAs). Monounsaturated fatty acids (MUUFAs) showed the lowest percentage (4.2% of total FAs) and among them oleic acid methyl ester (18:1 ω -9) prevailed (Figure 4b).

141 **Figure 4.** Fatty acid composition of *Chaetomorpha linum*: (a) Seaweed fatty acid profile as percentage
142 of total fatty acids); (b) Percentage of saturated fatty acids (SAFAs), monounsaturated fatty acids
143 (MUFA), and polyunsaturated fatty acids (PUFAs).

144 The fatty acid profile of *S. spallanzanii* is shown in Table 1. Palmitic acid (16:0) was the
145 predominant SAFA (accounting for 26.18% of total lipids) followed by myristic acid (14:0) and
146 stearic acid (18:0). Palmitoleic acid (16:1) prevailed among MUFA and 16-docosadienoic acid (22:2,
147 n-6) was the most abundant PUFAs.

148 In both the selected bioremediators the ratio of ω -3 to ω -6 fatty acids was <1.

149 **2.3. Feed Formulation and Preliminary Fish Growth Trials**

150 As shown in Table 2, both the prepared control (CTRL) and innovative (IM) feeds were
151 isoenergetic, isoproteic and isolipidic. During both the preliminary fish growth trials
152 (May-September), in which the experimental feeds were employed, the mean temperature ranged
153 between 20.6 and 23 °C and dissolved oxygen between 6.2 and 7.4 mg/L. All the measured water
154 parameters resulted in the physiological range for *D. labrax*. In both the experimental trials,
155 differences on the biomass gain, specific growth rate, and survival rate between the control and the
156 treatment were not statistically significant (Table 3).

157

158

Table 1. Fatty acid composition of *Sabella spallanzanii*.

Saturated fatty acid percentages (SAFA)	
14:00	9.64
15:00	0.25
16:00	26.18
17:00	0.20
18:00	8.95
20:00	1.66
22:00	7.62
23:00	0.34
24:00	2.43
Σ	57.26

Monounsaturated fatty acid percentages (MUFAs)	
16:1 n-7	5.62
17:1 n-8	4.67
18:1 n-9	3.16
18:1 n-7	4.94
20:1 n-9	3.28
22:1 n-9	1.12
24:1 n-9	3.67
Σ	26.46

Polyunsaturated fatty acid percentages (PUFAs)	
18:2 n-6	0.54
18:2 n-4	0.64
18:3 n-6	0.81
18:3 n-3	2.04
20:2 n-6	0.85
20:3 n-6	1.49
20:3 n-3	1.20
20:4 n-6	1.74
20:5 n-3	1.17
22:2 n-6	4.50
22:6 n-3	1.29
Σ	16.28

159
160**Table 2.** Proximate composition (% dry weight) of the experimental diets (n=3). Values are reported as mean \pm S.E..

	¹ CTRL	¹ IM
Crude protein	46.0 \pm 0.4	45.8 \pm 0.3
Ether extract	15.5 \pm 0.1	15.3 \pm 0.1
Ash	11.5 \pm 0.1	11.2 \pm 0.2
Gross energy	20.79 \pm 0.21	20.82 \pm 1.01

¹ CTRL: Control feed; IM: Innovative feed.161
162

163
164**Table 3.** Survival rate (%), biomass growth, specific growth rate (n=3; mean \pm S.D.) of *Dicentrarchus labrax* fed with the experimental feeds.

I Trial		
	¹ CTRL	¹ IM
Biomass gain (g)	0.62 \pm 0.04	0.55 \pm 0.01
Specific growth rate (%)	4.32 \pm 0.21	4.14 \pm 0.16
Survival rate (%)	87 \pm 2	96 \pm 2

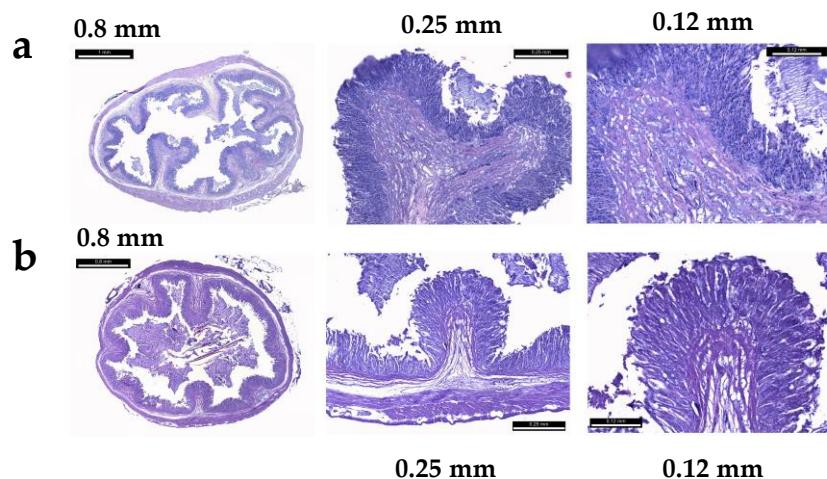
II Trial		
	CTRL	IM
Biomass gain (g)	2.87 \pm 0.15	2.1 \pm 0.12
Specific growth rate (%)	2.96 \pm 0.16	2.4 \pm 0.11
Survival rate (%)	85 \pm 3	94 \pm 2

¹ CTRL: Control feed; IM: Innovative feed.

165

In particular, when the innovative meal was employed biomass gain reached a value of 0.55 ± 0.01 g in the first trial and 2.10 ± 0.12 g in the second trial. These values didn't differ statistically from those recorded for the control feed accounting 0.62 ± 0.04 g in the first trial and 2.87 ± 0.15 g in the second trial. As regards the specific growth rate, the value recorded for IM group in the first trial was $4.14 \pm 0.16\%$ and $2.4 \pm 0.11\%$ in the second trial.

171
172
173
174


These values were not statistically different from those recorded for the respective controls in both the trials. A negligible fish mortality was recorded for both the feeds at the end of each trial and in particular the survival rates were $87 \pm 2\%$ for CTRL and $96 \pm 2\%$ for IM with the lowest size of fish (first trial) and $85 \pm 3\%$ for CTRL and $94 \pm 2\%$ for IM in the second trial.

175

2.4. Fish Histological Analyses

176
177
178
179
180

In the second trial the examined sections of fish stomach tunica mucosa and tunica submucosa showed normal histological pattern, without inflammations (lymphocyte infiltration) or degenerations in both CTRL and IM fish. Both the tunica mucosa and the tunica submucosa appeared regularly extended, without interruptions or alterations of the epithelium; and the cells were intact and didn't show any sign of suffering (Figure 5).

Figure 5. Stomach histological analyses of the fish feed with the experimental diets : (a) fish fed with the control meal; (b) fish fed with the innovative meal.

181
182

3. Discussion

184
185
186

The gradual increase in environmental eutrophication resulting from mariculture effluents represents a major issue imposing an urgent need to mitigate this negative impact to the marine ecosystem [24,25]. Bioremediation represents a valid solution, particularly in integrated

187 mult-trophic aquaculture systems, where bioremediator organisms are employed providing the
188 final self-purification [5], and transforming the wastes into useful biomass [2]. In the present study,
189 we utilized an integrated bioremediation approach to realize an IMTA system involving
190 polychaetes and macroalgae reared/cultivated in association with fish cages, achieving for both
191 organisms consistent amounts of biomass, and opening several other interesting new horizons.
192 From the obtained results several interesting issues arose:

193 -Both in the case of macroalgae and polychaetes consistent amount of biomass were achieved
194 in the aquaculture plant. The algal species selected in the present study was cultivated in the
195 multitrophic integrated aquaculture scenario to remove nitrogen and phosphorus surplus from
196 waste and at the same time to become a valuable by-product of bioremediation. This species
197 already showed to be an effective bioremediator in integrated cultivation systems with fish and
198 crustacean, since the nutrient concentration in the surrounding environment resulted considerably
199 reduced [26,27]. In the here realized IMTA system, the cultivation of *C. linum* resulted in a good
200 biomass increase reaching about a 5% SGR. This result is noteworthy leading to suggest that this
201 seaweed biomass could be employed as a potential source of nutritionally beneficial compounds for
202 animal and human consumption as well as new dietary supplements. This is supported by the
203 results obtained from the algal biochemical analyses on the total lipid and fatty acids content
204 revealing a concentration of lipids corresponding to 9.4 ± 2.4 mg/g DW with an interesting content
205 of PUFAs. In particular, ω -3 and ω -6 fatty acids, which were mainly represented by oleic, linoleic,
206 linolenic, docosahexaenoic (DHA), eicosapentaenoic acid (EPA), and arachidonic (ARA) acids. This
207 issue is remarkable since fish oil, used for the formulation of fish feeds, is the most common and
208 major source of the ω -3 fatty acids EPA and DHA making the fish more beneficial for consumers.
209 However, since fish resource is decreasing whilst fish oil price is increasing as well as the
210 commercial interest in these long chain fatty acids [28,29], there is an urgent need for an alternative
211 source of essential PUFAs. In this regard, some farmers are opting to use cheaper alternatives with
212 a high essential fatty acid content, for example vegetable oil, cotton seed oil and sun-flower oil.
213 These substitutes, however, often result poor in terms of ω -3 EPA and DHA. By contrast, *C. linum*
214 could be an optimal alternative as a source of these PUFAs. The commercial production of DHA
215 and EPA from algae became a lively business in the last part of the 20th century due to the increase
216 in awareness of their benefits for human health. In particular, DHA showed beneficial effects on
217 preventing human cardiovascular diseases, cancer, schizophrenia, and Alzheimer's disease [30].
218 Moreover, this ω -3 fatty acids, as well as arachidonic acid, are necessary in the growth and
219 functional development of the brain and the maintenance of the normal brain function in adults.
220 Mammals are unable to produce them and consequently they must be supplied as food
221 supplement, considering that an insufficient fatty acid consumption is the major cause of human
222 chronic diseases.

223 The experience of rearing polychaetes in IMTA also gave encouraging results, which showed
224 that a huge biomass can be achieved and thus suggesting the use of *S. spallanzanii* in fortified fish
225 foods. The slight mortality recorded coupled with the high increase in volume and biomass of the
226 reared polychaetes, demonstrated the feasibility of co-rearing *S. spallanzanii* with low costs of
227 production and high profits. As a consequence, if the acquired technology is applied to a medium
228 aquaculture farm, the produced polychaete biomass, coupled to algal and fish biomass, might reach
229 values in the order of several tons/year in a completely non-fed culturing system. In addition, a
230 reduction of the environmental impact due to aquaculture activity is accomplished on account of
231 the well-known bioremediation capabilities of *S. spallanzanii* [7,31]. On the other hand, the
232 capability of this polychaete to remove several bacterial groups from fish farm waste and the
233 bioremediation service associated to the waste conversion into polychaete protein-rich biomass of
234 potentially marketable value, had been already stated by Stabili et al. [32]. From the present study it
235 can be inferred that the use of the here investigated invertebrate might ensure not only protein but
236 also lipid and fatty acid supply for fish feeds. Obtained data indeed evidenced an interesting
237 composition also in terms of fatty acids profile. In particular, long-chain polyunsaturated ω -3 fatty
238 acids accounted for 5.6% of PUFAs and long-chain polyunsaturated ω -6 fatty acids for 9.9%. In

addition, the presence of the essential α -linolenic acid (18:3 ω 3) in the investigated worm is noteworthy not only for fish nutrition but also for humans eating fish potentially nourished with these polychaetes as supplements, since neither fish nor humans are able to synthesize this acid [33]. Moreover, *C. linum* if added to *S. spallanzanii* as a supplement, could represent a novel resource providing α -linolenic acid (18:3 ω 6) but especially α -linoleic acid, since up to now the main known sources for these fatty acids are fish and vegetable oils. In addition, the profiles of both the here considered marine organisms regarding the ω -3 and ω -6 acids are interesting also in the light of the World Health Organization's recommendation indicating that ω -6: ω -3 ratio should not be higher than 10 in the human diet [34]. *Chaetomorpha linum* and *S. spallanzanii* showed a low ω -6/ ω -3 ratio.

Even though the total lipid content is usually low in macroalgae, their employment as an ingredient in aquacultural feeds is well established on account of their high proportion of PUFAs, combined with other interesting secondary metabolites (e.g., polysaccharides, vitamins, proteins) [35–37]. In the present research, as new dietary supplements, *C. linum* was carefully mixed with *S. spallanzanii* (10% of polychaetes and 5% of algae) as new dietary supplements for the formulation of an innovative feed for farmed juveniles of seabass *D. labrax*. The analysis of the productive indexes obtained from the growth trials showed that:

- During both the trials, the physico-chemical parameters of water were in the normal range for optimal fish growth showing that the innovative feed didn't affect negatively the rearing conditions;

- Employing the innovative meal, the survival rate was $96 \pm 2\%$ with the lowest sized fish and $94 \pm 2\%$ with the highest sized fish. Being these values higher than 80%, our results can be considered excellent in nursery operation [38]. Thus, our data indicate that the innovative meal did not affect the survival of treated fish and that the fish rearing was carefully managed. Moreover, high values of survival rate indicate that all fish had equal access to feed and uniform growth rates were achieved as demonstrated by the obtained indices of weight and length increase;

- In both the trials no statistical differences were evidenced in biomass gain and specific growth rate between fishes nourished with the control and the innovative meal. These results are of particular interest since demonstrated that a partial replacement of fishmeal with 10% of polychaete meal and 5% of algal meal does not produce negative effects on the fish growth. This result is in line with other studies showing positive effects on growth, feed utilization, lipid metabolism, liver function, body composition, stress responses and disease resistance determined by the addition of even small amounts of several algal-based meals to fish diets [39]. Moreover, the polychaete *S. spallanzanii*, due to its already investigated high protein content with noble amino acids [15] presumably contributed to improve palatability for the farmed fish species. This represents an added value in the hypothesis of fishmeal replacement since decrease of fish meal, and/or fish oil, can lead to a decrease in palatability in diets with, as an example, an increased vegetal content. The decrease of palatability can lead to a decrease of feed uptake, making these feeds less effective for fish growth and health;

- No histological alterations were observed in the stomach of fish fed with innovative meal and the conditions of stomach mucosa were comparable with those of fish fed with the control feed. These results indicated that the experimental feed containing polychaete and seaweed meal was comparable to a traditionally employed fishmeal with potential applicative relapses.

281 4. Materials and Methods

282 4.1. Species Sampling

283 As regards macroalgae (Figure 6), the selected species was *Chaetomorpha linum* (Chlorophyta, 284 Cladophorales) characterised by filamentous, uniseriate, unbranched thalli, of a pale bright green 285 colour, 200–1000 μ m wide and from 10 cm up to several metres long, commonly found both in the 286 attached and in the unattached habitus (Figure 6a). Thalli of *C. linum* were hand-collected by means 287 of a rake in the Mar Piccolo of Taranto (Mediterranean Sea, Ionian Sea, Italy) (Figure 6b) where it

288 can make very thick drifting mattresses, in the period late autumn-late spring, with highly variable
 289 biomass values throughout the year.

290 **Figure 6.** *Chaetomorpha linum* from the Mar Piccolo of Taranto: (a) thalli; (b) hand-collection.

291 Specimens of *S. spallanzanii* were obtained from the natural recruitment on plastic nets used as
 292 collectors placed in the fish farm located in the Gulf of Taranto (Mediterranean Sea, Ionian Sea,
 293 Italy) (Figure 3a). Both macroalgae and worms were randomly divided in three sets. The first set
 294 was placed around the fish cages in the realized IMTA system for bioremediation purposes, the
 295 second set was employed for the biochemical analyses and the third set was used for the
 296 preparation of the innovative fish feed.

297 **4.2. Rearing/Cultivation of Bioremediators in IMTA System**

298 In order to obtain high algal biomass, *C. linum* cultivation trials were realized with the first set
 299 of *C. linum*, in an IMTA system equipped with fish cages within the framework of the Remedia-Life
 300 Project (LIFE16 ENV/IT/000343). The collected seaweeds were transferred to the aquaculture farm
 301 to set up the cultivation sockets, each consisting in seaweeds enclosed into a net sack and hung with
 302 a festoon arrangement at 1 m of depth within a mussel long-line system located around 6 fish cages
 303 (Figures 1,2). A total of 252 cultivation sockets were allocated in the plant, hang for 6 months until
 304 seaweed reached the highest biomass, after that the surplus was collected. Later, since thalli
 305 fragmentation was observed, followed by a rapid decay, cultivation was stopped. Seaweed biomass
 306 growth was measured according to the standard formulation of Specific Growth Rate (SGR) for
 307 seaweeds as:

$$[(Wt/W0)1/t-1] \times 100\% [40].$$

308 Polychaetes employed for the bioremediation purpose, as already specified, were obtained
 309 from the natural recruitment on plastic nets used as collectors immersed in the fish farm (Figure 3).
 310 A total of 252 collectors were placed around the fish cages suspended at about 12 m depth. The
 311 worm biomass was measured after 3 and 6 months of permanence in the realized IMTA system.

313 **4.3. Total Lipid and Fatty Acid Analysis**

314 The second set of macroalgae and polychaetes was transported to the laboratory under
 315 refrigeration. Here, macroalgal thalli were placed into suitable tanks, cleaned of possible epibionts
 316 and detritus, rinsed with seawater and then with a 8‰ sterile physiological solution. Macroalgae
 317 were then placed in a stove at a temperature of 50 °C for 24 h and subsequently were ground with
 318 the help of a mortar and a pestle. All the analyses were done with ground algal tissues. Afterwards,
 319 biochemical analyses including total lipids and fatty acids determination were carried out.

320 Animals were rinsed with seawater filtered with 0.45 µm Millipore filters to remove any
 321 possible epibionts and then extracted from their tubes, homogenized in a Polytron (Kinematica

322 Type PT/10/35), stored at -80°C until use and then employed for the biochemical analyses including
323 total lipids and fatty acids evaluation.

324 All reagents and solvents (analytical grade) were acquired from Sigma (Sigma–Aldrich GmbH,
325 Steinheim, Germany). Total lipids from macroalgae and polychaetes were extracted in accordance
326 with the method described in Folch et al. [41]. All the samples (dry macroalgal tissues or polychaete
327 homogenized tissues) were extracted with methanol/chloroform/water (1/2/1) in order to obtain a
328 final volume 20 times the sample volume. Lipids were obtained after centrifugation and removal of
329 the upper phase and collection of the lower chloroform phase. The evaluation of the total lipid
330 content was obtained by a colorimetric enzymatic assay [42] employing a commercial kit (FAR,
331 Verona, Italy).

332 The fatty acids composition of macroalgae and polychaetes was determined in accordance
333 with the method described in Budge and Parrish [43]. Briefly, the fatty acids (FAs) of total lipids
334 were transesterified to methyl esters as described by Stabili et al. [13,44]. The samples were cooled,
335 and after the addition of 1 mL of distilled water, shaken vigorously. Fatty acid methyl esters
336 (FAMEs) were collected in the upper benzene phase. Benzene phase was moved to a vial and
337 subjected to dry by using a nitrogen stream at a very slow applied flow rate to avoid the loss of the
338 sample. Gas chromatography using an HP 6890 series GC (Hewlett Packard, Wilmington, DE, USA)
339 equipped with flame ionization detector was employed to perform the analyses of sample FAME
340 extracts. In order to separate the FAMEs an Omegawax 250 capillary column (Supelco, Bellafonte,
341 PA, USA) (30 mm long, 0.25-mm internal diameter, and 0.25-mm film thickness) was utilized. The
342 column temperature program was the following: 150–250°C at 4°C/min. and then held at 250°C. The
343 retention times of known standards (FAME mix, Supelco-USA) were used to attain the right FAMEs
344 identification. The results were indicated as percentages of total identified methyl ester fatty acids.
345 The employed gas carrier was Helium at a flow of 1 mL/min. The injected volume was 1 mL.
346

346 All assays were conducted in replicate samples of the macroalgae and worms.

347 4.4. Experimental Feed Fish Formulation and Proximate Composition

348 The third set of macroalgae and polychaetes was placed on aluminium foils and dried in oven
349 at 60°C for 48 h. Dried material was then ground to obtain algal (AS) and polychaete (PS) powder
350 to be used as supplement to prepare the experimental fish feed. For this purpose, oil and dry
351 ingredients were thoroughly mixed whereby water was then blended into the mixture to attain an
352 appropriate consistency for pelleting using a meat grinder. Pellets were dried overnight at 50°C
353 and refrigerated at 6°C until utilization. Two feeds were prepared: a control fishmeal based feed
354 (CTRL) and an innovative feed (innovative meal = IM) containing 10% of polychaete supplement
355 (PS) and 5% of algae supplement (AS).

356 The prepared feeds (CTRL and IM) were also analysed ($n = 3$) to determine their proximate
357 composition in accordance with standard methods [45].

358 The gross energy (GE) content was determined by an adiabatic calorimetric bomb (IKA C7000,
359 Staufen, Germany). Total nitrogen content was determined in accordance with the Dumas method,
360 using a nitrogen analyzer (Rapid N III, Elementar Analysensysteme GmbH, Hanau, Germany). The
361 crude protein was calculated as total N \times 6.25.

362 4.5. Fish Growth Trials

363 The innovative feed as well as the control feed were utilized for feeding juveniles of European
364 sea bass *Dicentrarchus labrax*. The study was carried out between May 2019 and September 2019 for
365 4 months in experimental tanks at the fish farm. In a first trial, juveniles of *D. labrax* at 36 days of
366 age with an initial mean body weight of 0.05 ± 0.001 g were randomly stocked (200 fish per tank) in
367 6 fibreglass tanks (80 L) supplied by an open water circuit: three tanks for the control feed (CTRL)
368 and three tanks for the innovative feed (IM). The first trial lasted 60 days from May 2019 to July
369 2019. Fish were singly weighted after 30, 45 and 60 days, in order to check the fish biomass gain.
370 The fish were fed to satiation by hand twice a day 7 days per week. Temperature and dissolved

371 oxygen were determined daily in the morning and in the afternoon with a digital oximeter (YSI 55
372 Hexis).

373 The same procedures described above were also utilized in a second trial, which lasted 30 days
374 from August 2019 to September 2019. In this case, *D. labrax* juveniles at 153 days of age with an
375 initial mean body fish weight of 2.00 ± 0.001 g were employed.

376 At the end of both experimentation trials, survival rate (%), biomass growth, specific growth
377 rate, and coefficient of variation for length were evaluated with the following formulas [46]:

378 Survival rate (%) = (number of fish at the end/number of fish at the beginning) $\times 100$;

379 Biomass gain (g) = final individual weight – initial individual weight;

380 Specific Growth Rate (%) = (\ln final weight – \ln initial weight) $\times 100/$ feeding days.

381 4.6. Fish Histological Analyses

382 In order to control the histology of the stomach tunica mucosa and tunica submucosa, six fish
383 for each experimental tank (CTRL and IM) were sampled at the beginning and at the end of the
384 second trial. The stomachs were excised from fish and samples were fixed in buffered formalin in
385 order to assess eventual alterations induced by the experimental diet. After dehydration and
386 embedding in paraffin wax following standard histological techniques, the histological samples
387 were cut (5 μ m thickness) by a microtome and stained with Haematoxylin/Eosin after 24 h in a
388 laboratory thermostat.

389 4.7. Statistical Analysis

390 Analysis of variance ANOVA-1-way was used to test for differences in the weight, length,
391 survival rate, biomass gain and specific growth rate between fish fed with the innovative feed and
392 fish fed with the control feed. All the analyses were performed by using GMAV 5 computer
393 programme (University of Sidney, Australia).

394 5. Conclusions

395 The rearing/cultivation of *Sabella spallanzanii* and *Chaetomorpha linum* in the realized IMTA
396 system allowed to restore the farming environmental quality and, at the same time, to obtain as a
397 by-product, high biomass of both macroalgae and polychaetes intended to be utilized as sources of
398 functional ingredients such as fatty acids beneficial to fish and human health. On the basis of our
399 results from the experimental feeding trials on *Dicentrarchus labrax* juveniles, we can conclude that
400 the prepared innovative feed containing polychaetes and algae as supplements represents a
401 potential meal for the European seabass practical diets. The employment of the examined species as
402 dietary supplement in fish feed can contribute to overcome the major concerns over fish as a
403 declining resource and the consequent rising cost of fish feeds worldwide. Work is ongoing to
404 explore some of these issues in detail.

405 **Author Contributions:** Conceptualization, L.S., E.C., M.L., A.P. and A.G.; Methodology, L.S., M.L., A.P., and
406 B.S.; Validation, L.S., E.C., M.L., A.P. and A.G.; Investigation, L.S., M.L., A.P., and B.S.; Writing—Review and
407 Editing, L.S. M.L., A.P. and A.G.; Supervision, L.S., M.L., A.P. and A.G.; Funding Acquisition, L.S., and A.G.

408 **Funding:** This research was funded by European Community under Grant Agreement No. LIFE16
409 ENV/IT/000343 project “REMEDIA Life.”

410 **Acknowledgments:** Thanks are due to Dr. Patrizia Ricci and to Giuseppe Portacci for the support in the
411 laboratory and the help in the field.

412 **Conflicts of Interest:** The authors declare no conflict of interest.

413 References

- 414 1. FAO. The State of World Fisheries and Aquaculture 2018 – Meeting the sustainable development goals.
415 Rome, Italy, 2018, <http://www.fao.org/3/I9540EN/i9540en.pdf>.

416 2. Chopin, T. Aquaculture, Integrated Multi-trophic (IMTA). In *Sustainable Food Production*, Christou, P.,
417 Savin, R., Costa-Pierce, B.A., Misztal, I., Whitelaw, C.B.A., Eds.; Springer: New York, NY; 2013;
418 <https://doi.org/10.1007/978-1-4614-5797-8>.

419 3. Gifford, S.; Dunstan, R.H.; O'Connor, W.; Koller, C.E.; MacFarlane, G.R. Aquatic zooremediation:
420 deploying animals to remediate contaminated aquatic environments. *Trends Biotechnol.* **2006**, *25* (2), 60–65,
421 DOI:10.1016/j.tibtech.2006.12.002.

422 4. Riisgård, H.U.; Larsen, P.S. Filter-feeding in marine macro-invertebrates: pump characteristics, modelling
423 and energy cost. *Biol Rev Camb Philos Soc* **1995**, *70*, 67–106, DOI: 10.1111/j.1469-185X.1995.tb01440.x.

424 5. Ostroumov, S. Some aspects of water filtering activity of filter feeders. *Hydrobiologia* **2005**, *542*, 275–286,
425 <https://doi.org/10.1007/s10750-004-1875-1>.

426 6. Milanese, M.; Chelossi, E.; Manconi, R.; Sara, A.; Sidri, M.; Pronzato, R. The marine sponge *Chondrilla*
427 *nucula* Schmidt, 1862 as an elective candidate for bioremediation in integrated aquaculture. *Biomol Eng*
428 **2003**, *20*, 363–368, [https://doi.org/10.1016/S1389-0344\(03\)00052-2](https://doi.org/10.1016/S1389-0344(03)00052-2).

429 7. Giangrande, A.; Cavallo, A.; Licciano, M.; Mola, E.; Pierri, C.; Trianni, L. Utilization of the filter feeder
430 *Sabella spallanzanii* as bioremediator in aquaculture. *Aquacult. Int.* **2005**, *13*, 129–136,
431 <https://doi.org/10.1007/s10499-004-9025-3>.

432 8. Fu, W.; Sun, L.; Zhang, X.; Zhang, W. Potential of the marine sponge *Hymeniacidon perleve* as a
433 bioremediator of pathogenic bacteria in integrated aquaculture ecosystems. *Biotechnol. Bioeng.* **2006**, *93* (6),
434 1112–1122, DOI:10.1002/bit.20823.

435 9. Ostroumov, S.; Widdows, J. Inhibition of mussel suspension feeding by surfactants of three classes.
436 *Hydrobiologia* **2006**, *556*(1), 381–386, <https://doi.org/10.1007/s10750-005-1200-7>.

437 10. Ajjabi, L.C.; Abaab, M.; Segni, R. The red macroalga *Gracilaria verrucosa* in co-culture with the
438 Mediterranean mussels *Mytilus galloprovincialis*: productivity and nutrient removal performance. *Aquacult. Int.*
439 **2018**, *26*, 253–266, <https://doi.org/10.1007/s10499-017-0206-2>.

440 11. Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed marine natural products in the pharmaceutical
441 and cosmeceutical industries: tips for success. *Mar. Drugs* **2014**, *12*, 1066–1101, DOI:10.3390/MD12021066.

442 12. Duarte, K.; Justino, C.I.L.; Pereira, R.; Freitas, A.C.; Gomes, A.M.; Duarte, A.C.; Rocha-Santos, T.A.P.
443 Green analytical methodologies for the discovery of bioactive compounds from marine sources. *Trends Environ. Anal. Chem.* **2014**, *3*, 43–52, <https://doi.org/10.1016/j.teac.2014.11.001>.

444 13. Stabili, L.; Acquaviva, M.I.; Biandolino, F.; Cavallo, R.A.; De Pascali, S.A.; Fanizzi, F.P.; Narracci, M.;
445 Petrocelli, A.; Cecere, E. The lipidic extract of the seaweed *Gracilaria longissima* (Rhodophyta,
446 Gracilariales): A potential resource for biotechnological purposes? *New Biotechnol.* **2012**, *29*, 443–450,
447 DOI:10.1016/j.nbt.2011.11.003.

448 14. Li, P.; Mai, K.; Trushenski, J.; Wu, G. New developments in fish amino acid nutrition: towards functional
449 and environmentally oriented aquafeeds. *Amino acids* **2009**, *37*(1), 43–53, DOI:10.1007/s00726-008-0171-1.

450 15. Stabili, L.; Sicuro, B.; Daprà, F.; Gai, F.; Abete, C.; Dibenedetto, A.; Pastore, C.; Schirosi, R.; Giangrande, A.
451 The Biochemistry of *Sabella spallanzanii* (Annelida: Polychaeta): a potential resource for the fish feed
452 industry. *JWAS* **2013**, *44*(3), 384–395, <https://doi.org/10.1111/jwas.12038>.

453 16. Salze, G.; Mc Lean, E.; Battle, P.R.; Schwarz, M.C.; Craig, S.R. Use of soy protein concentrate and novel
454 ingredients in the total elimination of fish meal and fish oil in diets for juvenile cobia, *Rachycentron*
455 *canadum*. *Aquaculture* **2010**, *298*, 294–299, <https://doi.org/10.1016/j.aquaculture.2009.11.003>.

456 17. Olive, P.J.W.; Craig, S.; Cowin, P.B.D.; Islam, M.D.; Rutherford, G. The culture of Polychaeta as a
457 contribution to sustainable production of aquafeeds. In *Abstract of Aquaculture Europe 2001*, European
458 Aquaculture Society Special Publication: Ostend, Belgium, **2002**.

459 18. Murugesan, P.; Elayaraja, S.; Vijayalakshmi, S.; Balasubramanian, T. Polychaetes – a suitable live feed for
460 growth and colour quality of the clownfish, *Amphiprion sebae* (Bleeker, 1953). *J Mar. Biol. Assoc. India* **2011**,
461 *53*, 1–7, DOI:10.6024/jmbai.2011.53.2.01655-06.

462 19. García-Alonso, J.; Müller, C.T.; Hardege, J.D. Influence of food regimes and seasonality on fatty acid
463 composition in the ragworm. *Aquatic Biol.* **2008**, *4*, 7–13, DOI:10.3354/ab00090.

464 20. Mustafa, M.G.; Nakagawa, H. A review: dietary benefits of algae as an additive in fish feed. *Isr. J. Aquacult.*
465 **1995**, *47*, 155–162.

466 21. Valente, L.M.P.; Gouveia, A.; Rema, P.; Matos, J.; Gomes, E.F.; Pinto, I.S. Evaluation of three seaweeds
467 *Gracilaria bursa-pastoris*, *Ulva rigida* and *Gracilaria cornea* as dietary ingredients in European sea bass
468

469 (469) (*Dicentrarchus labrax*) juveniles. *Aquaculture* 2006, 252, 85–91,
470 <https://doi.org/10.1016/j.aquaculture.2005.11.052>.

471 22. Yu, Y.Y.; Chen, W.D.; Liu, Y.J.; Niu, J.; Chen, M.; Tian, L.X. Effect of different dietary levels of *Gracilaria*
472 *lemaneiformis* dry power on growth performance, haematological parameters and intestinal structure of
473 juvenile Pacific white shrimp (*Litopenaeus vannamei*). *Aquaculture* 2016, 450, 356–362,
474 <https://doi.org/10.1016/j.aquaculture.2015.07.037>.

475 23. Miller, M.R.; Nichols, P.D.; Carter, C.G. n-3 Oil sources for use in aquaculture – alternatives to the
476 unsustainable harvest of wild fish. *Nutr Res Rev* 2008, 21, 85–96, DOI:10.1017/S0954422408102414.

477 24. Martinez-Porcha, M.; Martinez-Cordova, L.R.. World Aquaculture: Environmental Impacts and
478 Troubleshooting Alternatives. *Sci World J.* 2012, 2012, Article ID 389623, 9 pages,
479 DOI:<http://dx.doi.org/10.1100/2012/389623>.

480 25. Ahmed, N.; Thompson, S. The blue dimensions of aquaculture: A global synthesis. *Sci Total Environ* 2019,
481 652, 851–861, <https://doi.org/10.1016/j.scitotenv.2018.10.163>.

482 26. Bouwman, A.F.; Pawlowski, M.; Liu, C.; Beusen, A.H.W.; Shumway, S.E.; Glibert, P.M.; Overbeek, C.C.
483 Global hindcasts and future projections of coastal nitrogen and phosphorus loads due to shellfish and
484 seaweed aquaculture. *Rev Fish Sci* 2011, 19(4), 331–357, <https://doi.org/10.1080/10641262.2011.603849>.

485 27. Chopin, T.; Buschmann, A.H.; Halling, C.; Troell, M.; Kautsky, N.; Neori, A.; Kraemer, G.P.;
486 Zertuche-González, J.A.; Yarish, C.; Neefus, C. Integrating seaweeds into marine aquaculture systems: a
487 key toward sustainability. *J Phycol* 2001, 37, 975–986, <https://doi.org/10.1046/j.1529-8817.2001.01137.x>.

488 28. Su, J.; Hou, H.; Wang, C.; Luo, Y. Effects of replacing soybean meal with cottonseed meal on growth,
489 muscle amino acids, and hematology of juvenile common carp, *Cyprinus carpio*. *Aquacult Int* 2019, 27,
490 555–566, <https://doi.org/10.1007/s10499-019-00340-2>.

491 29. Linder, M.; Belhaj, N.; Sautot, P.; Tehrany, E.A. From Krill to Whale: an overview of marine fatty acids
492 and lipid compositions. *Oléagineux, Corps gras, Lipides*, 2010, 17(4), 194–204,
493 <https://doi.org/10.1051/ocl.2010.0328>.

494 30. Ibarguren, M.; López, D.J.; Escribá, P.V. The effect of natural and synthetic fatty acids on membrane
495 structure, microdomain organization, cellular functions and human health. *Biochim Biophys Acta Biomembr*
496 2014, 1838, 1518–1528, DOI: 10.1016/j.bbamem.2013.12.021.

497 31. Stabili, L.; Licciano, M.; Giangrande, A.; Fanelli, G.; Cavallo, R.A. *Sabella spallanzanii* filter-feeding on
498 bacterial community: Ecological implications and applications. *Mar Environ Res* 2006, 61(1), 74–92,
499 DOI:10.1016/j.marenvres.2005.06.001.

500 32. Stabili, L.; Schirosi, R.; Licciano, M.; Mola, E.; Giangrande, A. Bioremediation of bacteria in aquaculture
501 waste using the by-product polychaete *Sabella spallanzanii*. *New Biotechnol* 2010, 27(6), 774–781,
502 DOI:10.1016/j.nbt.2010.06.018.

503 33. Sanchez-Machado, D.I.; Lopez-Cervantes, J.; Lopez-Hernandez, J.; Paseiro-Losada, P. Fatty acids, total
504 lipid, protein and ash contents of processed edible seaweeds. *Food Chem* 2004, 85, 439–444,
505 <https://doi.org/10.1016/j.foodchem.2003.08.001>.

506 34. Mahan, L.K.; Escott-Stump, S. *Krause's food, nutrition, & diet therapy*. 10th ed.; W.B. Saunders: Philadelphia,
507 PA, 2000; ISBN:0721679048, 9780721679044.

508 35. Colombo, M.L.; Risè, P.; Giavarini, F.; De Angelis, L.; Galli, C.; Bolis, C.L. Marine macroalgae as sources
509 of polyunsaturated fatty acids. *Plant Food Hum Nutr* 2006, 61, 67–72, DOI:10.1007/s11130-006-0015-7

510 36. Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids, and dietary fibre in edible seaweed
511 products. *Food Chem* 2007, 103, 891–899, <https://doi.org/10.1016/j.foodchem.2006.09.041>.

512 37. Cecere, E.; Acquaviva, M.; Belmonte, M.; Biandolino, F.; Cavallo, R.A.; Lo Noce, R.; Narracci, M.;
513 Petrocelli, A.; Ricci, P.; Stabili, L.; Alabiso, G. Seaweeds and aquaculture: an indispensable alliance for the
514 integrated management of coastal zone. *Biol Mar Medit* 2010, 17(1), 138–141.

515 38. Sumi, K.R.; Das, M.; Siddika, I. Effect of different protein levels of fry feed on the production of quality
516 tilapia (*Oreochromis niloticus*) fry. *JBAU* 2011, 9(2), 365–374, <https://doi.org/10.3329/jbau.v9i2.11053>.

517 39. Shi, Q.; Rong, H.; Hao, M.; Zhu, D.; Aweya, J.J.; Li, S.; Wen, X. Effects of dietary *Sargassum horneri* on
518 growth performance, serum biochemical parameters, hepatic antioxidant status, and immune responses
519 of juvenile black sea bream *Acanthopagrus schlegelii*. *J Appl Phycol* 2019, 31, 771–778,
520 <https://doi.org/10.1007/s10811-018-1719-4>.

521 40. YONG et al 2013

522 41. Folch, J.; Less, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from
523 animal tissues. *J Biol Chem* **1957**, *226*, 497–508.

524 42. Zollner, N.; Kirsch, K. Determination of the total lipid concentration in serum. *Zentralbl Ges Exp Med* **1962**,
525 *135*, 545–549.

526 43. Budge, S.M.; Parrish, C.C. FA determination in cold water marine samples. *Lipids* **2003**, *38*, 781–791,
527 DOI:10.1007/s11745-003-1127-4.

528 44. Stabili, L.; Acquaviva, M.I.; Biandolino, F.; Cavallo, R.A.; De Pascali, S.A.; Fanizzi, F.; Narracci, M.;
529 Cecere, E.; Petrocelli, A. Biotechnological potential of the seaweed *Cladophora rupestris* (Chlorophyta,
530 Cladophorales) lipidic extract. *New Biotechnol* **2014**, *31*(9), 436–444, DOI:10.1016/j.nbt.2014.05.002.

531 45. AOAC. *Official Methods of Analysis*, 16th ed.; Association of Official Analytical Chemists: Washington DC,
532 USA, **1995**.

533 46. Palmegiano, G.B.; Daprà, F.; Forneris, G.; Gai, F.; Gasco, L.; Guo, K.; Peiretti, P.G.; Sicuro, B.; Zoccarato, I.
534 Rice protein concentrate meal as a potential ingredient in practical diets for rainbow trout (*Oncorhynchus*
535 *mykiss*). *Aquaculture* **2006**, *258*, 357–367, <https://doi.org/10.1016/j.aquaculture.2006.04.011>.

536 47. Yong, Y.S.; Yong, W.T.L.; Anton, A. Analysis of formulae for determination of seaweed growth rate. *J*
537 *Appl Phycol* **2013**, *25*(6), 1831–1834.

538

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).