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Helical conformations and structures are frequently observed

in materials. The presence of helices at points of the unit cell

of a crystal, on a larger size scale in the crystalline lattice or

even in the microscopic structure of crystals, affects the

chemico-physical properties of a solid and, hence, also

interactions with light. Here, attention has been drawn to the

geometrical properties of helices produced by a hypothetical

torque of a transparent crystal, and optical properties of

twisted crystals easily observed by a polarizing microscope

have been discussed. Radially grown spherulites are obtained

by most substances crystallized from melt. The circular

arrangement of elongated crystals reflects the optical

behaviour of each crystal and, because of the larger

dimensions of spherulites, allows investigations otherwise

hardly feasible on separate crystals. According to the torsional

analysis of elongated bodies and the birefringence theory,

information on the existence of helically shaped crystals can be

deduced, as hereinafter explained, from the microscopic

appearance and birefringence pattern of spherulites. Indeed,

twisting decreases the birefringence throughout an elongated

crystal and, therefore, also the birefringence of spherulites

formed by twisted radial crystals is reduced.
1. Introduction
An exhaustive analysis of the interaction of matter with light is

fundamental for the achievement of technological advances and

innovations. A relevant optical property of most solids is double

refraction or birefringence, originated by the asymmetry of the

crystalline lattice in di- and tri-metric systems, which causes the

variation of the refractive index with the direction. Solids are

usually highly birefringent because of the high degree of order

and anisotropy of their crystalline structure. However, any

oriented structure formed by asymmetric molecules, such as that

of liquid crystals under particular conditions, may show

birefringence. Birefringent crystals may be observed as bright
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bodies in a dark field through an optical polarizing microscope equipped with a rotating stage. At a fixed

goniometric position, the brightness level depends on the orientation of the crystal with respect to the

propagation direction of light. The birefringent behaviour of a crystal can be described relative to one

or two axes, referred to as optical axes; these axes define the only viewing directions for which a

birefringent crystal is optically isotropic and, therefore, appears dark. In all other directions,

transparent crystals show interference colours, varying with the thickness and the orientation of the

optical axis, according to the Michel-Levy table for the identification of minerals. Maximum

birefringence is shown by sections cut parallel to one of the optical axes (for uniaxial crystals, usually

the c-crystallographic axis), whereas extinction occurs when a crystal is viewed along an optical axis,

and an intermediate birefringence is appreciable for all other crystal orientations. The presence of

intramolecular helices is well recognized in biological matter (typically for proteins, such as that of the

tobacco mosaic virus crystals [1]) and, although less ubiquitous, helical structures may also be present

in inorganic substances and minerals. For instance, the X-ray pattern and the optical behaviour of

quartz evidence the presence, along the c axis, of helical conformation of SiO4 tetrahedrons sharing

corners [2–5]. Banding such as that occasionally observed in some samples of cryptocrystalline fibres

of SiO2 (chalcedony) has been ascribed to alternate twisted and untwisted growth during

crystallization [6], whereas twinning has been claimed to be responsible for banding in potassium

chlorate crystals, where the periodical variation of the direction of the optic axis causes bright and

dark bands when the crystal is viewed between crossed Nicol prisms [1].

David Brewster (who discovered both the method currently used to determine the quaquaversus

polarization and the existence of biaxial crystals) represented rings in spherulites of uniaxial crystals

many decades before the observation of bands in chalcedony and ascribed this optical phenomenon

to rhythmic crystallization [7]. He explained extinction bands with the absence of solid or the

formation of very minute crystals incapable of giving birefringence, as a consequence of a periodic

‘repulsive power’ keeping molecules at a distance from the growth front. Almost a century after the

scientific work of Brewster, Gibbs [8] identified this repulsive power with the heat generated at

the growth front during solidification and, later, Belousov [9] discovered a chemical reaction that

spontaneously exhibits temporal periodicity. Meanwhile, a number of researchers came to the same

conclusion as Brewster on banding [10,11]. The presence of intramolecular helices in a crystalline

phase, observed in proteins as well as in synthetic polymers, is related to thermodynamic reasons.

Helical morphology, instead, is usually thought to derive from screw dislocations [2,12] and to

develop rapidly because of kinetic factors. Macro-helical morphology, such as that observed for

graphite grown in cast iron, may arise from aggregation of platelets [13], whereas spiral growth of

two rod-like phases, rotating around each other in a matrix phase, has also been hypothesized during

eutectic solidification [14]. Nano- and sub-micrometre helices intermeddle with the symmetry and the

chirality of crystal space groups affecting, therefore, also optical properties, particularly birefringence

of solids. As theorized first by J.W. Gibbs, materials may show circular polarization, or optical

rotation, in addition to linear birefringence [15,16]. This circumstance occurs not only when molecules

are chiral, but also when non-chiral substances are arranged helicoidally [5]. Helices, indeed, are

inherently chiral because they may be built according to opposite handedness, resulting in mirror

images (referred to as enantiomorphs) that cannot be superimposed upon each other. Right-handed

and left-handed helices of non-chiral molecules are isoenergetic and, therefore, should be equally

probable [17,18]. Furthermore, when right-handed and left-handed helices cannot be arranged in the

same crystalline lattice, crystallization should lead to a ‘racemic’ solid formed by 50% of each chiral

crystal. Gibbs [15] also noted that a hypothetical racemic solid with right-handed helices (all parallel

to the X direction) oriented normal to left-handed helices (with all axes in the Y direction) would not

affect a beam of linearly polarized light entering orthogonally to the XY plane. However, the same

specimen would rotate by a certain angle, in a positive or negative manner, the polarization plane if

light propagates parallel to one enantiomeric type of helix. Predicting the effect of nano-helices on the

optical properties is very difficult because, beyond considering the orientations of all types of helices

relative to light, it is necessary to account for their relative amount, orientation and chirality.

Furthermore, it is necessary to exactly identify the symmetry properties of solids among 230 Fedorov

three-dimensional space groups.

Helical structures, of micrometre and sub-micrometre dimensions, in crystals might also derive from

the deformation actions of external forces [19]. Twisting of an elongated body produces, indeed, co-axial

helical arrangements of previously aligned points (here referred to as fibres) of the solid; such a

deformation will gradually decrease from the outward to the interior of the solid. To deal with optical

properties of elongated crystals, it is convenient to consider a crystal as formed by a number of
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parallel fibres, all of which are made up of sequences of unit cells. Birefringence of such a crystal depends

on that of all its individual fibres which, in turn, depends on the orientation of the optical axis along

them. To have maximum birefringence, the optical axis of all fibres has to lay in the plane of the

microscope stage for the whole fibre length. Usually, experimental observations are performed in such

a way that the optical axis is oriented along the fibre axis (length-slow or positive fibres) or

perpendicularly to the fibre axis (length-fast or negative fibres). Assuming that a single fibre is

deformed as a cylindrical helix, the optical axis along the deformed fibre will be parallel, in the case

of a length-slow fibre, or normal, in the case of a length-fast fibre, to the tangent to the helix. The

optical behaviour of an elongated crystal of sub-micrometre size would be very difficult, if not

impossible, to reveal by means of an optical polarizing microscope because of the limited resolving

power and magnification level of the equipment. Fortunately, almost all substances solidified by

cooling from melt form spherulites [7,20–23], which, under particular conditions, can reach

dimensions of hundreds of micrometres or even more. Furthermore, in such a close assemblage, radial

crystals are in contact to each other so as to produce the appearance of a single individual [7,22]. The

circular arrangement of elongated crystals reflects the optical behaviour of each crystal and, because of

the large dimensions of spherulites, allows investigations otherwise hardly feasible on separate

crystals. As the aggregation of crystals reproduces, on a larger circular scale, the optical behaviour of

each radial crystal, it is possible to correlate physical properties and shape of crystals within

polycrystalline solids focusing on spherulites [16,20–23], which are also ideal bodies to evidence

incidental twisting of crystals during growth. Indeed, the existence of helical distortions of crystals can

be deduced from the microscopic appearance and the birefringence of spherulites with the

appropriate size for optical observations. Here, it is shown that torsion of the crystalline structure

produces a wide range of orientations of the optical axis, and the distribution of orientations affects

the optical properties of the twisted crystal. The analysis of the influence of helical deformations

within the crystalline structure leads to the conclusion that birefringence decreases along the whole

length of the crystal. The observation of a decreased birefringence of a crystal may have different

explanations, for instance, the deformation or even the change of the crystalline lattice. Furthermore,

often polymer spherulites, referred to as mixed [24], show very low birefringence and lack of a

Maltese cross, which indicates, in the framework of the consolidated birefringence theory, a non-

uniform crystallographic orientation of the constituent radial crystals. However, the presence of

twisting can be ascertained, as hereinafter described, by observing the colour pattern of a spherulite

produced by a retardation plate. For the sake of simplicity, the proposed qualitative test will be here

described for low birefringent solids, as polymers, which usually show interference colours from dark

grey to white of the first order, according to the Newton’s Table of Periodical Colours. An

intermittent decrease of birefringence may be due to several reasons [7,10,15,16,23,25–27], for instance,

rhythmic crystallization or the presence of molecular helices under particular conditions. Therefore,

the observation of optical extinction cannot be considered as a proof of periodic crystal twisting, but

only as a starting point for further and deeper investigations. The optical test here described allows us

to discriminate among the main invoked causes of banding: rhythmic crystallization or molecular

twisting on one side and crystal twisting on the other. Moreover, on the basis of the result of the test,

one can evaluate the appropriateness of further investigations and procedures in pursuit of the true

origin of banding. Notwithstanding a few authors ascribed banding in polymers to cooperative

twisting of radial crystals in spherulites (i.e. to an oscillatory orientation of the optical axis with a

periodic perpendicular orientation to the microscope stage causing extinction), other investigators

observed that it is topologically impossible to arrange in such a way a set of ribbons [28]. Hereinafter,

it is shown that torsion of real polymer crystals during their growth cannot result in a rotation of the

optical axis around the geometrical axis of the crystals. Banding, indeed, mostly occurs because of

pauses in the growth, often accompanied by a remarkable change in the size of constituent fibrils.
2. Material and methods
Bacterial poly(3-hydroxybutyrate) (PHB) grade, coded T19, Mw ¼ 890 kg mol21, was supplied by Biomer

(Germany) and used after drying under vacuum at 808C. A small amount of PHB was squeezed between

two glass coverslips (Linkam 3930) at 2008C onto a TechoKartell TK22 hot plate, then rapidly transferred

onto a Linkam THMS 600 microscope hot stage endowed with a Linkam TMS91 temperature

programmer. The sample was kept at 2008C for 2 min; afterwards, the temperature was reduced to

308C at 208C min21, in order to allow fast crystallization without significant thermal degradation. Six
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specimens, with thickness approximately 30–50 mm, were crystallized. Crystallization began during

cooling, after a brief induction time. Few early spherulites, often banded, nucleated in the melt faster

than the most part of spherulites. Samples were kept at the final temperature of 308C until complete

crystallization. Observations were performed with a Axioscope Zeiss polarizing microscope equipped

with l/4 and l plates (Leitz, Germany) and a JVC TK-1085 video camera coupled with the Image Pro

Plus 3.0 software. Pictures were also taken with a Canon EOS 1300D camera equipped with Sigma

105 mm F2.8 EX DG Macro OS objective. To transform linear polarized light into circularly polarized

light, the l/4 plate was inserted, between the stage and the observed specimen, at 458 with respect to

the polarization direction. To determine the birefringence sign of spherulites, viewed in both linearly

and circularly polarized light, the l plate was placed in between the stage and the analyser.
rnal/rsos
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3. Theoretical background and discussion
Although radial crystals in spherulites are usually considered rectangular parallelepipeds, here the

torsion of a cylindrical crystal of radius r, carrying a constant torque, will be discussed for simplicity.

The rigorous analysis of torsion, and hence of birefringence, of more complex crystal shapes requires

advanced mathematical methods, because the points of each non-circular cross-section not only rotate

but also move out of the plane of the section; however, intuitive considerations lead to the conclusion

that the displacement field of points of a transversal section of a non-circular prismatic bar and then

the shear stress distribution are not much dissimilar to those existing in circular bars.

As twisting of a shaft produces a helical arrangement of previously aligned points, before discussing

torsion it is useful to outline mathematical properties of helices. A helix, or curve of constant slope, is

defined by the property that the tangent makes a constant angle with a fixed line. In particular,

cylindrical helices are three-dimensional curves with zero slope. Such curves may be described by the

parametric equations: x ¼ rcos t, y ¼ rsin t and z ¼ kt, where k ¼ p/2p is proportional to the pitch p of

the helix ( p is the distance between two consecutive points of the helix belonging to a same generatrix

of the cylinder). From the definition of cylindrical helices, it comes out that the tangent at any point P
forms with the generatrix of the cylinder for P a constant angle bh. The angle bh has to differ from 0

and p/2; otherwise, a helix reduces to a circumference or a line. The relationship between the helical

angle bh, the pitch p and the radius r of the section of the cylinder is bh ¼ arctan (2pr=p). As bh is

constant, any line, passing for a point P of the helix and normal to the cylinder axis, will form with

the tangent of the helix for the same point P a constant angle ah, with ah þ bh ¼ p/2. The angle ah is

usually referred to as the inclination of the helix. As tanbh ¼ cotah ¼ 1=tanah ¼ (2pr=p), it follows

that tanah ¼ 1=cotah ¼ ( p=2pr), that is ah ¼ arctan ( p=2pr). In a Frenet frame, the unit vector T

tangent to a cylindrical helix at a point P has the following coordinates:

T ¼ �r sin tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ k2
p ,

r cos tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ k2
p ,

kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ k2
p

� �
:

The vector N normal to the helix has the following components:

N ¼ �r cos t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ k2
p

r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ k2
p ,

�r sin t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ k2
p

r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ k2
p ,0

 !
¼ (� cos t,� sin t,0):

The vector B (referred to as binormal), normal to the plane of N and T , has the following components:

B ¼ N� T ¼
r cos tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ k2
p kffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ k2
p

� sin t 0

������
������,�

�r sin tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ k2
p kffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ k2
p

� cos t 0

������
������,
�r sin tffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ k2
p r cos tffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ k2
p

� cos t � sin t

������
������

0
@

1
A

¼ k sin tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ k2
p ,� k cos tffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ k2
p ,

rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ k2
p

� �
:

The cosine of the angle bh between the vector T and the versor V ¼ (0,0,1), which is parallel to the

generatrices of the cylinder (i.e. parallel to the z axis), is given by the following equation:

cosbh ¼
T†V

kTk†kVk ¼
k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ k2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 sin2 t=ðr2 þ k2Þ þ r2 cos2 t=ðr2 þ k2Þ þ k2=ðr2 þ k2Þ

q ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ r2
p :



z 

dz

A

B

B¢ dq

bh

Figure 1. Torsion of a cylindrical bar. Each linear segment AB deforms into a helix. The helical angle bh depends on the measure of
the arc BB0, which increases with the distance of the fibre AB from the torsion axis.
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The cosine of the angle ah ¼ p/2 2 bh between the vector B and the vector V (0,0,1) is as follows:

cosah ¼
B†V

kBk†kVk ¼
r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ k2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 sin2 t=ðr2 þ k2Þ þ k2 cos2 t=ðr2 þ k2Þ þ r2=ðr2 þ k2Þ

q ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ r2
p :

The angles g and d that the tangent T forms with the x and y axes, respectively, may be obtained from the

following formulae:

cosg ¼ dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2 þ dz2

p ¼ �r sin tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ k2
p

and cos d ¼ dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2 þ dz2

p ¼ r cos tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ k2
p :

Assuming a ¼ k/r, it results:

cos g ¼ � sin tffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

and cos d ¼ cos tffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p :

In conclusion, for a given helix, the angle bh (and, equivalently, the angle ah) is independent of P; also

the numbers: r/k2 þ r2 and k/k2 þ r2, which represent, respectively, the curvature and the torsion of the

helix, are independent of t and, hence, of P.

For the present purpose, the torsional analysis can be limited to the determination of the relationship

between the helical angle bh (which represents also the shear strain of a surface element of the cylinder)

and the angular rotation du/dz, which represents the angle of twist for unit length. From figure 1, it is

easy to show that BB
0
¼ rdu ¼ bhdz and, therefore:

bh ¼
du

dz
r:

As, for a prefixed torque, the helical angle bh is independent of z but depends on r, fibres of the crystal at

different distance from the torsion axis will form helices with different inclinations. Each of these helical

pathways has a definite inclination and, consequently, will show its own orientation of the optical axis.

At different distances r from the geometrical axis and, therefore, at different points of any section within

the crystal, the optical axis will have different orientations. For each helix at a given distance ri, indeed,

the optical axis in any point Pi of the helix will form a constant angle with the generatrix of the cylinder

passing for Pi. In particular, if the optical axis in the original straight fibres is oriented longitudinally, at

any point Pi of a helix the optical axis will have the same direction of the tangent and, therefore, will form

an angle bhi ¼ ridu/dz with the torsion axis. In other words, the change of the helical angle bh at different

‘deep’ of the twisted crystal is accompanied by a variability of the helical inclination and, therefore,

produces also a variability of orientation of the optical axis in each cross-section.

According to the torsion theory, the shear stress in points of a cross-section of a cylindrical bar is

proportional to the distance from the torsion axis and remains constant along each concentric

circumference. For a rectangular section of a parallelepiped crystal, the stress, and hence the

deformation, is maximum at the middle points of the sides and decreases, according to a nonlinear



Figure 2. Displacement field in a square cross-section of a parallelepiped crystal submitted to torque and viewed longitudinally. In
particular, when the fibres of the crystal are optically slow-length, the displacement vector in any point of the cross-section has the
direction of the optical axis. In any case, a beam of light faces several orientations of the optical axis through the thickness of the
crystal. Birefringence is hence reduced for the whole length of the crystal.
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law, with decreasing distance from the torsion axis. In both cases, hence, the shear stress is not constant, it

is directed along the tangents to circles and has the maximum value at the surface, independent of the

exact geometry of the section (see, for instance, figure 2). Although the shear stress is not constant in

each transversal section of an elongated crystal of a given shape, the stress distribution is the same in

all sections of the crystal. And, because the stress vectors are tangential, the points of any section will

suffer an average deformation equal to the average deformation of the whole points of the crystal.

The helical deformation of the crystal induced by twisting is also responsible of the rotation, around

the torsion axis, of the optical indicatrix of each constituent fibre and, hence, of the birefringence change

relatively to the untwisted crystal. As twisting of a shaft produces a helical arrangement of all fibres of a

crystal (as shown above), the optical properties of twisted crystals can be deduced from those of co-axial

hollow cylinders, each built by helices with the same inclination at equal distance from the cylinder axis

and exchangeable by a simple translation along the z axis.

Given a cylinder with radius r, there are infinite helices on it, differing for the value of k, that is for the

values of the inclination and the pitch. However, when two among the three parameters r, ah or bh and p
are prefixed, also the third results fixed. If the radius r of the cylinder is increased, it is necessary to

increase p in order to keep constant tan ah; whereas it is necessary to decrease tan ah to maintain p
unchanged. In general, it is possible to build on the surface of two cylinders with different radii two

sets of helices having either different inclination or pitch. However, a cylindrical twisted crystal can be

thought as built by sets of n1, n2, . . . ,nm helices with the same pitch p wound on m co-axial hollow

cylinders with increasing radii r1, r2, . . . rm. Let us assume that any ni set of helices on the ith cylinder

have the same inclination ai, that is the same value of k ¼ ki . The nj helices coiled on the jth cylinder



Figure 3. Helical winding of a ribbon-shaped crystal. If the untwisted crystal is considered as constituted of slow-length fibres, it is
immediate the perception of the sinusoidal change of the projection of the tangent to each helically deformed fibre. The sinusoidal
trend of the derivative of the projection of a helix entails a change in the birefringence sign every half-pitch.

7
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:181215
with radius rj, although inclined of an angle aj = ai may be described by the same value k valid for the ni

helices; indeed, if rj tan aj ¼ ri tan ai, it results kj ¼ ki and the two sets of helices ni and nj will have the

same pitch, i.e. pi ¼ pj. Torsion of a cylindrical bar will transform ni lines parallel to the torsion axis, and

at equal distance ri from the axis, in helices with equal pitch pi and equal inclination ai. Moreover, nj lines

parallel to the torsion axis and at a distance rj = ri from the axis, will be deformed in helices with a

different angle aj but with the same pitch pj ¼ pi of all other helices in the bulk.

As said above, the helical deformation of the crystal structure induced by twisting is responsible for

the rotation, around the torsion axis, of the optical indicatrix and, hence, of the optical axis, for each co-

axial hollow cylinder within the crystal. Knowing the geometrical properties of helices, it is easier to

determine, for the deformed crystalline structure, the distribution of the orientation of the optical axis

within a section and the effect of helical deformations on birefringence. This distribution is shown in

figure 2 for a positively birefringent crystal. Let us consider a light beam perpendicular to the

geometric axis of the cylinder, assuming that the optical axis throughout the untwisted cylinder is

parallel to the geometric axis. This assumption entails that the line tangent to the helix in a given

point has the direction of the optical axis in the same point. If a crystal was so tiny to consist of few

coplanar fibres or only one fibre, and it could be wound as a unique helix around a cylinder,

practically a continuous rotation of the optical indicatrix around the helical axis of the unique fibre

would be observed. This virtual circumstance would lead to the observation of successive maxima

and minima of birefringence along the length of the crystal. Moreover, the projection (the white two-

dimensional curve in figure 3) of the helix, viewed longitudinally, has a sinusoidal-type derivative

function. Therefore, the optical axis of such a hypothetical crystal formed by one helix should

fluctuate every half-pitch from the II–IV quadrants to the I–III quadrants. An elongated crystal

viewed under an optical polarizing microscope with a retardation plate (generally a lamina of quartz,

mica or gypsum with a definite thickness) shows a definite colour at a goniometric angle of þ458 and

a different colour at 2458, when the angles are measured from the polarization plane of the light. A

hypothetical single helix crystal should show bands of both colours, although reverted, either at þ458
and 2458 or, in the case of a very small pitch, a uniform colour given by the combination of the two.

If, for instance, a linear fibre viewed with a retardation plate is yellow at þ458 and blue at 2458, once

helically deformed it should show intermittent yellow and blue bands or a greenish colour in all

sectors of the stage. However, such a narrow crystal, if really existing, would be incapable of being

birefringent [7,10]. Each circular section of a real twisted cylinder contains, instead, portions of helices

with angles bh decreasing with decreasing radius, that is with angles ah increasing with r. If an

observer could pass through the twisted cylinder perpendicularly to the torsion axis, he would face

helices with different inclination at different depth and, hence, a distribution of orientation of the

optical axis. Therefore, two rays perpendicular to the cylinder axis, and entering two sections, at any

distance, of the distorted crystal will experience the same reduction in linear birefringence. In other

words, the twisted crystal will show a uniform and lower birefringence along its length. Moreover,

because along each helix within a twisted crystal, the direction of the optical axis is reverted every

half-pitch, and a crystal is made of sets of co-axial helices for the whole length, the optical test settled

by Brewster [7] to establish the birefringence sign of spherulites allows us also to reveal twisting.

Indeed, by using a retardation plate, a hypothetical low birefringent spherulite constituted of thin,

twisted radial crystals should show four luminous sectors of the same colour or alternating bands

with the same colours, although exchanged, in all sectors. The colour patterns of twisted and

untwisted spherulites of low birefringence solids, as polymers, are shown in figure 4. In figure 5,

several PHB-banded spherulites, observed through a polarizing microscope equipped with a l

retardation plate are shown. Spherulites were obtained with the non-isothermal crystallization



(b)
(a)

(c)

Figure 4. Scheme of the colours of untwisted (a and b) and twisted (c) spherulites observed with a l plate. A spherulite is usually
positive (a) or negative (b) according to the crystallographic orientation of radial crystals. It is worth specifying that the birefringence
sign and, thus, the colours of an untwisted spherulite cannot be changed by rotating the stage. If pauses in the growth occur, non-
birefringent rings within spherulites arise. A helicoidally twisted thick crystal is ‘neutral’ because the optical axis has not a preferred
orientation and, therefore, will show one colour or, in the case of a very thin crystal, alternating colours (usually blue and yellow for
weakly birefringent solids). A spherulite composed of radial twisted fibres will appear therefore coloured as the spherulite (c). However,
if the pitch of each helical fibre is below the resolution power of the microscope, all the fibres constituting a twisted spherulite will
appear greenish for the whole length.

(a)

(c) (d )

(b)

(i)

(ii)

Figure 5. Polarized light micrographs (crossed polarizers) of three poly(3-hydroxybutyrate) specimens. Colours are produced with a
first-order or full-wave retardation plate. All spherulites show crossed sectors with a prevalent yellow or blue colour onto a magenta
background. (a) A region of a PHB specimen during non-isothermal crystallization showing a large spherulite (approx. 200 mm in
diameter). Bright bands appear to be thicker than dark bands. (b) A spherulite (approx. 130 mm in diameter) with higher band
spacing. (c) Positively birefringent banded spherulites in a completely crystallized PHB specimen. (d ) A zig-zag-banded spherulite
viewed without (i) and with the l plate (ii).
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described in the Material and methods section. Non-isothermal procedures were preferred to slow

isothermal crystallizations, because undesired PHB degradation would favour the accumulation of

lower molecular weight species at the growth front and, therefore, rhythmic crystallization over



(a) (b)

Figure 6. Combined optical micrographs of a PHB specimen under circularly polarized light, with (b) and without (a) a l plate.
Spherulites do not show a Maltese cross and more details are appreciable than in linearly polarized light, but their sign remains
unchanged.
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twisting. In figure 6, PHB specimens viewed under circularly polarized light, with and without a l plate,

are shown. Under circularly polarized light, the Maltese cross disappears and details are highlighted by a

higher level of contrast. Notwithstanding the differences, spherulites in all specimens showed the same

birefringence sign: because the I–III sectors are blue and the II–IV sectors are yellow, the spherulites are

all conventionally positive, i.e. the value of the refractive index measured along radial directions is higher

than that measured along tangential directions. Positive birefringence indicates that the optical axis of

any radial fibre in a spherulite is constantly directed along the fibre axis and that, therefore, fibres

cannot be helicoidally twisted. In the present case, the proposed test clearly reveals that banding

cannot be due to twisting but, probably, to the oscillation of the thickness along the radii of the

spherulite [19,27,29–31].

Briefly, because the optical axis is not more uniformly oriented, but has a variable direction through

the thickness of a twisted cylinder, this latter will show a reduced birefringent power for the whole

length, when viewed longitudinally. Moreover, the sign of the birefringence should change

periodically along each helix as shown in figure 4c, becoming practically neutral for the whole

assemblage of co-axial helices. As a consequence, a spherulite composed of radial twisted crystals

should show four sectors of a sole colour.
4. Conclusion
Torsion of elongated birefringent crystals, with small but not null wideness and thickness, entails helical

deformations of the constituent fibres in the whole volume, causing a range of orientations of the optical

axis at different distances from the torsion axis, that is from the external surface to the inward of the

crystal. As a consequence of geometrical properties of helices and their assembly in twisted crystals,

helical distortions due to external forces during crystal growth do not cause particular optical effects

but only a reduction of birefringence throughout the crystal. Dark bands alternating to birefringent

bands along the length of a crystal, under a polarizing microscope, may only suggest intermittent

twisting during growth, because transversal banding along crystals and concentric rings within

spherulites is due to several reasons, for instance, rhythmic crystallization caused by temperature or

concentration gradients at the growth front. Therefore, one cannot consider periodic extinction as a

result of twisting without evidence of a cause–effect relationship between the two events. General

evidence of helical twisting of an elongated crystal includes reduced birefringence and the appearance

of coloured alternating bands in the presence of a retardation plate. The colours of the bands are

exchanged, with a consequent inversion of the colour pattern, if the elongated crystal is rotated by 908.
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la Fuente E, Suarez R. 2016 On the crystallization
of compacted and chunky graphite from liquid
multicomponent iron-carbon-silicon-based melts.
Metall. Mat. Trans. A 47, 4012 – 4023. (doi:10.
1007/s11661-016-3541-4)

14. Hotzer J et al. 2016 Phase-field simulations of
spiral growth during directional ternary eutectic
solidification. Acta Mater. 106, 249 – 259.
(doi:10.1016/j.actamat.2015.12.052)

15. Gibbs JW. 1882 On double refraction in perfectly
transparent media which exhibit the
phenomena of circular polarization. Am. J. Sci.
23, 460 – 476. (doi:10.2475/ajs.s3-23.138.460)

16. Kahr B, Freudenthal J, Gunn E. 2010 Crystals in
light. Acc. Chem. Res. 43, 684 – 692. (doi:10.
1021/ar900288m)

17. Corradini P, Petraccone V, Pirozzi B. 1976
Energetic calculations of the chain conformation
of isotactic polymers of olefins in the crystalline
state. Eur. Polym. J. 12, 831 – 836. (doi:10.1016/
0014-3057(76)90126-9)

18. Meille SV, Allegra G. 1995 Chiral crystallization
of helical polymers. Macromolecules 28,
7764 – 7769. (doi:10.1021/ma00127a024)

19. Raimo M. 2007 A thermo-conductive approach
to explain the origin of lamellar twisting in
banded spherulites. J. Mater. Sci. 42,
998 – 1003. (doi:10.1007/s10853-006-1385-9)

20. Raimo M. 2008 Analysis of layer by layer phase
transformation of a polyoxymethylene
copolymer film. Acta Mater. 56, 4217 – 4225.
(doi:10.1016/j.actamat.2008.04.042)

21. Raimo M. 2015 Growth of spherulites:
foundation of the DSC analysis of solidification.
ChemTexts 1, 13. (doi:10.1007/s40828-015-
0013-1)
22. Talbot HF. 1837 On the optical phenomena of
certain crystals. Phil. Trans. R. Soc. Lond. 127,
25 – 27. (doi:10.1098/rstl.1837.0005)

23. Raimo M. 2007 ‘Kinematic’ analysis of growth
and coalescence of spherulites for predictions on
spherulitic morphology and on the crystallization
mechanism. Progr. Polym. Sci. 32, 597 – 622.
(doi:10.1016/j.progpolymsci.2007.02.001)

24. Padden Jr FJ, Keith HD. 1959 Spherulitic
crystallization in polypropylene. J. Appl. Phys.
30, 1479 – 1484. (doi:10.1063/1.1734985)

25. Raman CV, Viswanathan KS. 1955 The theory of
the propagation of light in polycrystalline
media. Proc. Ind. Acad. Sci. Sect. A 41, 37 – 44.
(doi:10.1007/BF03047170)

26. Raimo M, Lotti E. 2016 Rebuilding growth
mechanisms through visual observations.
ChemTexts 2, 11. (doi:10.1007/s40828-016-
0030-8)

27. Raimo M. 2004 Delay in the growth of polymer
spherulites caused by superheating. J. Mater.
Sci. Lett. 39, 5567 – 5568. (doi:10.1023/B:JMSC.
0000039289.31979.2e)

28. Bouligand Y, Livolant F. 1984 The organization
of cholesteric spherulites. J. Phys. 45,
1899 – 1923. (doi:10.1051/
jphys:0198400450120189900)

29. Crist B, Schultz JM. 2016 Polymer spherulites: a
critical review. Progr. Polym. Sci. 56, 1 – 63.
(doi:10.1016/j.progpolymsci.2015.11.006)

30. Lugito G, Woo EA. 2016 Three types of banded
structures in highly birefringent
poly(trimethylene terephthalate) spherulites.
J. Polym. Sci. B Polym. Phys. 54, 1207 – 1216.
(doi:10.1002/polb.24037)

31. Zhang Y, Liao X, Luo X, Liu S, Yanga Q, Li G.
2014 Concentric ring-banded spherulites of
six-arm starshaped poly(3-caprolactone) via
subcritical CO2. RSC Adv. 4, 10 144 – 10 150.
(doi:10.1039/C3RA47503D)

http://dx.doi.org/10.1098/rspa.1952.0080
http://dx.doi.org/10.1007/BF00202228
http://dx.doi.org/10.1103/PhysRevLett.80.2149
http://dx.doi.org/10.1103/PhysRevLett.80.2149
http://dx.doi.org/10.1088/0034-4885/63/10/201
http://dx.doi.org/10.1017/S0080456800033895
http://dx.doi.org/10.1017/S0080456800033895
http://dx.doi.org/10.2475/ajs.s5-23.137.421
http://dx.doi.org/10.2475/ajs.s5-23.137.421
http://dx.doi.org/10.1039/DF9490500048
http://dx.doi.org/10.1007/s11661-016-3541-4
http://dx.doi.org/10.1007/s11661-016-3541-4
http://dx.doi.org/10.1016/j.actamat.2015.12.052
http://dx.doi.org/10.2475/ajs.s3-23.138.460
http://dx.doi.org/10.1021/ar900288m
http://dx.doi.org/10.1021/ar900288m
http://dx.doi.org/10.1016/0014-3057(76)90126-9
http://dx.doi.org/10.1016/0014-3057(76)90126-9
http://dx.doi.org/10.1021/ma00127a024
http://dx.doi.org/10.1007/s10853-006-1385-9
http://dx.doi.org/10.1016/j.actamat.2008.04.042
http://dx.doi.org/10.1007/s40828-015-0013-1
http://dx.doi.org/10.1007/s40828-015-0013-1
http://dx.doi.org/10.1098/rstl.1837.0005
http://dx.doi.org/10.1016/j.progpolymsci.2007.02.001
http://dx.doi.org/10.1063/1.1734985
http://dx.doi.org/10.1007/BF03047170
http://dx.doi.org/10.1007/s40828-016-0030-8
http://dx.doi.org/10.1007/s40828-016-0030-8
http://dx.doi.org/10.1023/B:JMSC.0000039289.31979.2e
http://dx.doi.org/10.1023/B:JMSC.0000039289.31979.2e
http://dx.doi.org/10.1051/jphys:0198400450120189900
http://dx.doi.org/10.1051/jphys:0198400450120189900
http://dx.doi.org/10.1016/j.progpolymsci.2015.11.006
http://dx.doi.org/10.1002/polb.24037
http://dx.doi.org/10.1039/C3RA47503D

	An optical test to unveil twisting of birefringent crystals in spherulites
	Introduction
	Material and methods
	Theoretical background and discussion
	Conclusion
	Ethics
	Data accessibility
	Competing interests
	Funding
	Acknowledgements
	References


