

Derivatization chemistries for the determination of inorganic anions and related compounds by gas-chromatography

Enea Pagliano^{a,*}, Beatrice Campanella^b, Alessandro D'Ulivo^b, Zoltan Mester^a

^a*National Research Council of Canada, 1200 Montreal Road, K1A 0R6 Ottawa, Ontario, Canada*

^b*Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica dei Complessi Organometallici, UOS di Pisa, Via Moruzzi 1, 56124 Pisa, Italy*

Abstract

Abstract qui

Keywords: Inorganic anions, alkyl phosphates, phosphonates, gas chromatography, derivatization

*Corresponding author

Email address: <enea.pagliano@nrc-cnrc.gc.ca> and
<enea.pagliano@outlook.com> (Enea Pagliano)

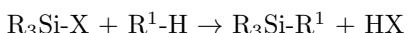
Contents

1 Abbreviations	3
2 Introduction	3
3 Derivatization Chemistry for Anions	3
3.1 Silylation	3
3.2 Alkylation	4
3.2.1 Pentafluorobenzyl alkylation	5
3.2.2 Trialkyloxonium alkylation	7
3.3 Hydride Generation	8
4 Applications	9
4.1 Nitrite and Nitrate	9
4.1.1 NO_2^- and the diazotisation reaction	10
4.1.2 NO_3^- and the nitration reaction	11
4.1.3 NO_2^- and NO_3^- : the alkylation approach	12
4.1.4 Other derivatization for NO_2^-	13
4.2 Orthophosphate	14
4.3 Mono-, di- alkylphosphates and phosphonates	14
4.3.1 P-OH silylation	14
4.3.2 P-OH methylation	17
4.3.3 P-OH alkylation	17
4.4 Thiocyanate, cyanide and sulfide	18
4.4.1 Generation of HCN by acidification	18
4.4.2 Gas chromatography of H_2S	19
4.4.3 Generation of CNCl by chloramine-T	19
4.4.4 CN^- , SCN^- and S^{2-} by alkylation	19
4.4.5 Sulfide derivatization with α,β -unsaturated ketones	21
4.4.6 Other derivatization for CN^-	21
4.5 Arsenic oxyanions	22
4.5.1 Hydride generation with $[\text{BH}_4]^-$	22
4.5.2 As-OH derivatization with thioglycolic acid alkyl esters	22
4.5.3 Other approach of As-OH derivatization	22
4.6 Selenite	22
4.6.1 Alkylation with aqueous NaBR_4 (R = Et, Pr, Ph)	22
4.6.2 Derivatization with aromatic <i>o</i> -diamines	22
4.7 Borate	22
4.8 Fluoride and other halides	22
5 Health and safety consideration	24
6 Conclusion	24

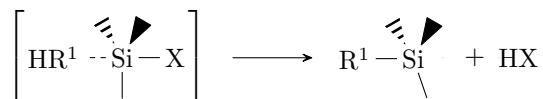
1. Abbreviations

2 BSA = *N,O*-bis(trimethylsilyl)acetamide
3 BSTFA = *N,O*-bis(trimethylsilyl)trifluoroacetamide
4 DMF = Dimethylformamide
5 HMDS = Hexamethyldisilazane
6 MPA = Methylphosphonate
7 MTBSTFA =
8 *N-tert*-Butyldimethylsilyl-*N*-methyltrifluoroacetamide
9 PFB = Pentafluorobenzyl
10 RMPA = Alkyl methylphosphonate
11 SIM = Single Ion Monitoring
12 TBDMSCl = *tert*-butyl dimethylchlorosilane
13 TBDMS = *tert*-butyl dimethylsilyl
14 TECS = Triethylchlorosilane
15 TMCS = Trimethylchlorosilane
16 TES = Triethylsilyl
17 TMS = Trimethylsilyl

18 2. Introduction

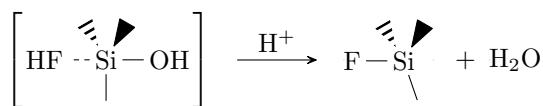

19 gas chromatography for compounds thermally stable
20 volatile. chemical derivatization has expanded the scope
21 of the application enormously
22 also anionic compounds can be measured by gas chro-
23 matography.
24 not a standard technique, but for certain applications (diffi-
25 cult matrices, need of sensitivity specificity is critical) GC
26 can play a major role in anion determination.
27 for example most of no2 and no3 speciation in biological
28 fluids is today attained with GC.
29 Advantages: miglior controllo dell effetto matrice avendo
30 possibilità di misurare matrici biologiche dove gli analiti
31 sono presenti a livello di tracce high resolution of complex
32 matrices. Having orthogonal methods. very high chrom-
33 resolution with GC
34 move here the part of calibration and yield of derivatiza-
35 tion.

36 3. Derivatization Chemistry for Anions


37 In this section, three general derivatization chemistries em-
38 ployed for inorganic anions are presented with attention to
39 the molecular aspects of the reactivity. Silylation is firstly
40 discussed for the conversion of oxyanions and fluoride to
41 the corresponding R₃Si derivatives. Alkylation strategies
42 are presented in Paragraph 3.2 and stable alkyl derivatives
43 were prepared for analyte such as halides, azide, cyanide,
44 thiocyanate, sulfide, nitrite and nitrate. A certain com-
45plementarity between silylation and alkylation strategies
46 could be observed. The last paragraph of this section is
47 dedicated to hydride generation with aqueous tetrahydroborate.
48 This derivatization chemistry, which is widely uti-
49 lized with atomic spectroscopy for the vapor generation of
50 metalloids, has been employed with gas chromatography
51 for trace metal determination and speciation.

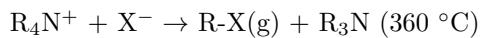
3.1. Silylation

Silylation is the most versatile derivatization technique
53 available for gas chromatographic applications, and it has
54 been used since the fifties for the conversion of protic func-
55 tional groups in the corresponding silyl-derivatives:
56


Replacement of active -H with the -SiR₃ moiety has been
58 reported for -OH, -SH, -COOH, -POH, -SOH, -NOH, -
59 BOH, -NH₂, =NH, and -CH₂C=O functional groups [1, 2].
60 The usefulness of this derivatization technique for gas chro-
61 matography is primarily related to better thermal stability,
62 enhanced volatility, and reduced polarity character of
63 the silyl-derivatives respect to the native analytes. Such
64 properties contribute for better chromatographic figure-
65 of-merits in terms of separation and peak shape. Further-
66 more, the use of silylation in conjunction with mass spec-
67 trometry has the advantage of providing diagnostic frag-
68 mentation patterns that can be used for identification pur-
69 pose and for quantitation in select ion monitoring mode.
70 Due to the importance of this topic for gas chromatog-
71 raphy, an extensive mole of literature has been devoted
72 to the fundamentals of silylation. A list of publications
73 describing the general aspects of this topic includes the
74 *Handbook of Analytical Derivatization Reactions* (Knapp
75 1979 [3]), the *Handbook of Derivatives for Chromatogra-
76 phy* in its first (Blau and King 1977 [4]) and second edition
77 (Blau and Halket 1993 [1]), and several review papers
78 [5–7] where the most recent is one presented by Poole in
79 2013 [7]. In this last publication the reactivity aspects of
80 the trialkylsilyl derivatization were discussed. The silyla-
81 tion reaction proceed accordingly to S_N2 mechanism with
82 the formation of a transition state deriving from the nu-
83 cleophilic attack of the analyte to the silicon atom of the
84 reagent [1]:
85

The kinetic aspects of this reaction are dictated by the
87 nucleophilic character of both analyte (HR¹) and leaving
88 group (X), use of acid/basic catalysts and nature of the solvent
89 [7]. Despite most of analytical applications described
90 in literature are devoted to organic molecules (such as al-
91 cohols, phenols, carboxylic acid, amino acids, etc.), the use
92 of silyl-chemistry has been proposed in early days for the
93 analysis of inorganic anions as well. Already in 1964 Lentz
94 [8] prepared TMS derivatives of several silicates from ge-
95 ological samples for a structural study. On the base of
96 this first investigation, Wu et al. [9] resolved five sili-
97 cates (SiO₄⁴⁻, Si₂O₇⁶⁻, Si₃O₉⁶⁻, Si₃O₁₀⁸⁻, and Si₄O₁₂⁸⁻) on a
98 dimethylpolysiloxane column at a temperature lower than
99 290 °C after reaction of the sample with HMDS for one
100 hour at room temperature. A better control on unwanted
101 condensation/hydrolytic side reactions was obtained using
102

103 a stronger silylating agent like BSA [10]. This approach
 104 found qualitative applications in the analysis of silicate
 105 minerals such as hemimorphite [11, 12], crystalline lead
 106 silicates [13], for the characterization of polyester silicone
 107 resins [14], for studying the polymerization of salicylic acid
 108 in solution [15] and more recently for the investigation of
 109 the ageing process of waterglass [16]. For the analysis of
 110 silicate the use of TMS chemistry has also the advantage of
 111 conferring chemical stability to unstable silicic acids [8, 17].
 112 Several other oxyanions has been identified by gas chro-
 113 matography after trimethylsilylation [4, 18]. Preparation
 114 of the TMS derivatives of BO_3^{3-} , CO_3^{2-} , $\text{C}_2\text{O}_4^{2-}$, PO_3^{3-} ,
 115 SO_4^{2-} , AsO_3^{3-} , PO_4^{3-} , VO_4^{3-} , and AsO_4^{3-} was achieved
 116 by reaction of 5-10 mg of the corresponding ammonium
 117 salts with BSTFA in DMF [19, 20]. NO_3^- and CrO_4^{2-} did
 118 not respond to the test, resulting in the discoloration of
 119 the solution [20]. The reaction was carried out at room
 120 temperature overnight and complete solubilisation of the
 121 ammonium salts was observed. The silylation yield was
 122 strictly dependent on the nature of the analyte counter-
 123 cation: Na^+ or K^+ salts resulted in poor signals as com-
 124 pared to the NH_4^+ ones. Butts and Rainey [20] explained
 125 this evidence with the lack of solubility of such salts with
 126 the BSTFA/DMF mixture (a precipitate was in this case
 127 observed). This issue was solved when the Na^+ or K^+
 128 salts were first eluted on a cation exchange resin in NH_4^+
 129 form. TMS derivatives of oxyanions, however, undergoes
 130 fast hydrolysis at room temperature and only phosphate
 131 and oxalate derivatives are sufficiently thermally stable
 132 and resistant to hydrolysis for GC analysis [21]. Since the
 133 TBDMS derivatives are several orders of magnitude more
 134 stable toward hydrolysis than the TMS ones [7], Mawhin-
 135 ney [21, 22] overcame the issue of TMS chemistry using
 136 MTBSTFA derivatization. TBDMS derivatives of CO_3^{2-} ,
 137 SO_3^{2-} , SO_4^{2-} , SeO_3^{2-} , SeO_4^{2-} , BO_3^{3-} , PO_3^{3-} , PO_4^{3-} , VO_4^{3-} ,
 138 AsO_3^{3-} , AsO_4^{3-} , and $\text{P}_2\text{O}_7^{4-}$ were prepared accordingly to
 139 a similar reaction scheme as already proposed by Butts
 140 and Rainey [19, 20]. tBDMS derivatives were proved to
 141 be stable for six months when kept at 4 °C. Even for
 142 the MTBSTFA derivatization the nature of the analyte
 143 counter-ion was important: only the ammonium salts un-
 144 derwent quantitative derivatization, whereas the Na^+ and
 145 K^+ salts were poorly reacted. Up to date the only oxyanions
 146 that received extensive attention belongs to the phos-
 147 phate family (Paragraphs 4.2 and 4.3). The major limita-
 148 tion of silyl-chemistry lies in the disposition to hydrolysis
 149 of the silyl-derivatives. For this reason, the analytes must
 150 be extracted in an organic solvent at first. In case of in-
 151 organic anions this operation is delicate and go against the
 152 hydrophilic nature of inorganic anions. Occasionally this
 153 phase transfer has been achieved, for example Matthews et
 154 al. [23] pre-concentrated ortho-phosphate from an aqueous
 155 solution into toluene using Adogen-464- HCO_3^- as catalyst.
 156 However, such operation can be challenging when com-
 157 plex matrix are analyzed. The only analyte that disobey
 158 the hydrophilic pathway common to most silyl-derivative
 159 is fluoride. In fact F^- can react directly with silanols in


160 aqueous/acidic medium to give stable Si-F bond ($\text{D}(\text{Si-F})$
 161 = 552 kJ/mol [24]):

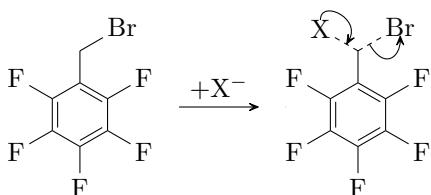
162 These family of derivatives do not hydrolyze and therefore
 163 can find interesting analytical applications as discussed in
 164 Paragraph 4.8.

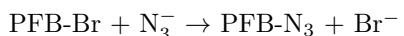
166 3.2. Alkylation

167 Silylation is a very useful method for GC derivatizations
 168 and several inorganic anions has been analyzed with this
 169 approach. However, silylation is moisture sensitive, re-
 170 quires a dry organic reaction medium and is active pri-
 171 marily toward oxyanions. In order to circumvent these is-
 172 sues, carbon-based chemistries have also been employed to
 173 convert inorganic anions into volatile alkyl-derivatives. A
 174 wide collection of alkylating agents is available for GC ap-
 175 plications, including dialkylacetals, diazoalkales, pentaflu-
 176 orobenzyl bromide, benzylbromide, boron trifluoride in
 177 methanolic or butanolic solution, tetrabutylammonium
 178 hydroxide and alkyl halides [25]. Alkylation reagents can
 179 be used alone or in conjunction with acylation or silylation
 180 reagents, and the experimental conditions can vary from
 181 strongly acidic to strongly alkaline [26]. A general review
 182 on non-silylation derivatization techniques for gas chro-
 183 matographic applications was presented in 1999 by Wells
 184 [25]. A first attempt for halides determination by alky-
 185 lation was proposed in 1970 by MacGee and Allen [27].
 186 The cations of an aqueous halide solution were exchanged
 187 with a tetraalkylammonium ion on a cation exchange col-
 188 umn. The resulting R_4N^+ halides were vaporized at 360
 189 °C in the injector port of the GC. The high-temperature
 190 promoted alkylation of the analyte:

191 Moore in 1982 improved this procedure increasing the yield
 192 of alkylation by using the *n*-butyl tosylate as alkylating
 193 agent [28] at a lower injection temperature:

194 where $\text{X}^- = \text{Cl}^-, \text{Br}^-, \text{I}^-$. In another on-column ap-
 195 proach halogens were extracted from aqueous solutions
 196 into toluene-alcohol with tetraheptylammmonium carbonate
 197 [29]:


201 Trialkylsulfonium ions are another set of reagents applied
 202 for on-column alkylation. Jacob et al. [30] treated plasma
 203 samples with tributylsulfonium perchlorate. The resulting
 204 ion pair $\text{n-Bu}_3\text{S}^+[\text{SCN}]^-$ was extracted in ethyl acetate
 205 and analyzed by GC with a nitrogen-phosphorus detector
 206 with detection limit of 5 μM and a precision of 5.9% at the
 207 20 μM level:

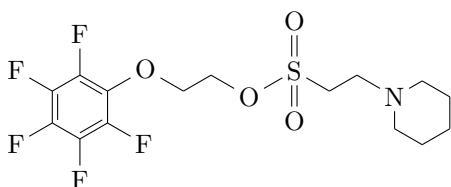

209 This method was also effective for the conversion of SeCN^-
 210 in the corresponding butyl-derivative. The major limitation
 211 of on-column reagents lies in their highly-caustic ef-
 212 fect with rapid deterioration of the GC column [25]. Other
 213 reagents have been employed for the alkylation of inorganic
 214 anions directly in solution. The first reported methods
 215 used sulphate esters such as dimethyl [31], diethyl sulphate
 216 [32], and haloalkanens like butyl iodide [33]. However, the
 217 risk of handling these reagents which are volatile, toxic
 218 and carcinogenic poses serious concerns for the safety of
 219 the analyst. For this reason, other reagents such as methyl
 220 tosylate and trimethyl phosphate were also employed for
 221 alkylation of inorganic anions [34]. Mulligan et al. [35]
 222 used ethyl tosylate mixed with 18-Crown-6 for aqueous
 223 ethylation of Cl^- , Br^- , I^- , CN^- , SCN^- , N_3^- , and NO_3^-
 224 followed by static headspace GC-MS. In SIM mode, quan-
 225 titation was achieved in the 0.001-1 mM range. Faigle and
 226 Klockow [36] derivatized Cl^- , Br^- , I^- , CN^- , SCN^- and
 227 NO_3^- with *n*-decyl methanesulphonate after extraction of
 228 the analytes in a non-aqueous solvent with $n\text{-Bu}_4\text{N}^+$ as
 229 phase-transfer catalyst. Funazo et al. [37] performed buty-
 230 lation in of Br^- , I^- , SCN^- , and NO_3^- with *n*-butyl tosylate.
 231 In this case a mixture of aqueous analyte with $n\text{-Bu}_4\text{N}^+\text{HSO}_4^-$ (phase transfer catalyst), TsOBu (alkylat-
 232 ing reagent), KOH (pH control), and CH_2Cl_2 was held at
 233 28 °C following GC-FID analysis of the organic phase. The
 234 reported derivatization yield were close to 100% for Br^- ,
 235 I^- , SCN^- and 54% for NO_3^- . Other than these classic ap-
 236 proaches, other two alkylation strategies have been lately
 237 applied for the conversion of inorganic ion into volatile
 238 compounds. In this regard, the pentafluorobenzyl alkylation
 239 will be treated in Paragraph 3.2.1, whereas the ethylation
 240 with triethyloxonium tetrafluoroborate in Paragraph
 241 3.2.2. A general summary of alkylation reaction employed
 242 for GC determination of inorganic anions is presented in
 243 Table 1. Note that Table 1 omits alkylation reactions spe-
 244 cific for phosphates which will be examined in Paragraph
 245 4.3 (Table 5).

247 3.2.1. Pentafluorobenzyl alkylation

248 Pentafluorobenzyl reagents have been employed to gener-
 249 ate volatile derivatives with a wide variety of compounds,
 250 such as phenols, thiols, carboxylic acids, and inorganic an-
 251 ions [25]. The most employed reagent is the commercially
 252 available pentafluorobenzyl bromide (PFB-Br) which is a
 253 colourless to yellowish liquid, having a melting point of
 254 19-20 °C and a density of 1.728 g/mL at 25 °C. The reac-
 255 tion between an inorganic anion (X^-) and PFB-Br follows
 256 $\text{S}_{\text{N}}2$ mechanism:

257 This scheme, however is not sufficient to fully explain
 258 PFB-Br reactivity toward anions. For example, we re-
 259 cently found a more complex chemistry between PFB-Br
 260 and CN^- [42]. Depending upon experimental conditions,
 261 multiple alkylation on the same CN^- anion led to single
 262 [$\text{N}\equiv\text{C-CH}_2(\text{PhF}_5)$], double [$\text{N}\equiv\text{C-CH}(\text{PhF}_5)(\text{BnF}_5)$], and
 263 triple [$\text{N}\equiv\text{C-C}(\text{PhF}_5)(\text{BnF}_5)_2$] PFB-derivatives. For-
 264 mation of these multi-alkylated species was favored in an al-
 265kaline environment where the triple-PFB specie was most
 266 abundant. PFB derivatives are easily formed, highly sta-
 267 ble, have excellent GC properties and are extremely sen-
 268 sitive with both ECD and MS detector in negative chem-
 269 ical ionization [43]. Two procedures for anions derivati-
 270 zation with PFB-Br are reported in the literature: the
 271 *extractive alkylation* and the *direct alkylation*. The ex-
 272 tractive alkylation is the most common approach. In this
 273 case, the analytes are transferred as an ion pair with a
 274 quaternary ammonium cation to an organic solvent con-
 275 taining PFB-Br. Dichloromethane, acetophenone, cyclo-
 276 hexanone, 1-pentanol, 2-octanol or methyl isobutyl ketone
 277 have been used. The organic phase is then separated from
 278 the aqueous and analyzed by gas chromatography. Funazo
 279 et al. [44] applied extractive alkylation to prepare PFB-
 280 derivatives of Br^- , I^- , CN^- , SCN^- , NO_2^- , NO_3^- , and S^{2-}
 281 by reacting for 30 minutes at room temperature 1.0 mL of
 282 aqueous standard with 0.2 mL of 0.1 M $n\text{-Pe}_4\text{N}^+\text{Cl}^-$ and
 283 1.0 mL of 0.1 M PFB-OTs in CH_2Cl_2 . Detection was at-
 284 tained by mass spectrometry [44] and ECD detector [45].
 285 Kage et al. [38] employed a similar approach for the deter-
 286 mination of azide in whole blood and urine: 0.2 mL of sam-
 287 ple were treated with a solution of PFB-Br in ethyl acetate
 288 (extraction solvent) using aqueous tetradecyldimethylben-
 289 zylammonium chloride as phase transfer catalyst. The re-
 290 action mixture was saturated with sodium tetraborate for
 291 pH control and held at 60 °C for 30 minutes:

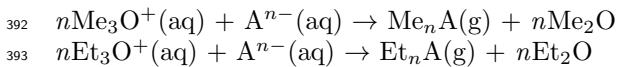
293 GC-MS analysis in negative ionization mode provide de-
 294 tection limit of 0.5 μM with a linear range of 1.0 – 200 μM .
 295 The nature of quaternary ammonium salt can influence
 296 the performance of extractive alkylation [46]. It was re-
 297 ported that *n*-hexadecyltrimethylammonium bromide was
 298 more suitable for simultaneous derivatization of I^- , SCN^- ,
 299 NO_2^- , and S^{2-} then $n\text{-Pe}_4\text{N}^+\text{Cl}^-$ [47]. R_4N^+ salts with
 300 longer alkyl chains has also been preferred in earlier meth-
 301 ods [38]. The increased lipophilic character of the phase
 302 transfer catalyst results in a better transportation effi-
 303 ciency of the anion from aqueous to organic phase. In
 304 this condition however, the degradation of PFB-Br, fa-
 305 vored by an alkaline medium, proceed faster [48]. R_4N^+
 306 salts have two major drawback: they promotes formation
 307 of unwanted emulsions which complicate phase separation
 308 and their migration into the organic phase is detri-
 309 mental for GC columns [49]. In this regard, Chen et al. [49]
 310 replaced R_4N^+ salts with a polymer based phase-transfer
 311 catalyst, the Kryptofix 222 B. The solid-bounded parti-
 312 cles of this polymer were not injected in the GC and no

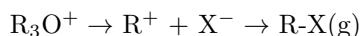

Table 1: Alkylation chemistries for the conversion of inorganic ion in volatile derivatives

Analyte	Reagent	Derivative	Notes (year)	Ref.
Cl^- , Br^- , and I^-	$n\text{-}(\text{Hp}_4\text{N})_2\text{CO}_3$	$n\text{-}\text{HpCl}$, $n\text{-}\text{HpBr}$, and $n\text{-}\text{HpI}$	On-column alkylation at 150 °C (1973)	[29]
Br^- , I^- , CN^- , SCN^- , S^{2-} , and NO_2^-	$(\text{MeO})_3\text{P}=\text{O}$ TsOMe $(\text{MeO})_2\text{S}=\text{O}$	MeBr , MeI , MeCN , MeSCN , Me_2S , and EtONO	1 mL of aqueous sample + 0.1 mL reagent; heating at 70 °C (1981-82)	[31] [34]
Br^- , I^- , CN^- , SCN^- , and S^{2-}	$(\text{Et}_2\text{O})_2\text{S}=\text{O}$	EtBr , EtI , EtCN , EtSCN , and Et_2S	Aqueous derivatization at 70 °C (1982)	[32]
SCN^- , and SeCN^-	$n\text{-}\text{Bu}_3\text{S}^+[\text{ClO}_4]^-$	BuSCN , and BuSeCN	Extraction of analyte in ethyl acetate with $n\text{-}\text{Bu}_3\text{S}^+$ followed by on-column alkylation at 325 °C. Applied for blood and urine (1984)	[30]
Br^- , I^- , SCN^- , and NO_3^-	$n\text{-}\text{BuOTs}$	BuBr , BuI , BuSCN , and BuONO_2	1 mL aqueous standard + $n\text{-}\text{Bu}_4\text{N}^+\text{HSO}_4^-$ + KOH + $n\text{-}\text{BuOTs}$ + CH_2Cl_2 . Yield: 92% Br^- , 100% I^- , 95% SCN^- , and 54% NO_3^- (1985)	[37]
Cl^- , Br^- , I^- , CN^- , SCN^- , N_3^- , and NO_3^-	EtOTs with 18-Crown-6	EtCl , EtBr , EtI , EtCN , EtSCN , EtN_3 , and EtONO_2	Aqueous derivatization buffered to alkaline pH followed by headspace GC-MS (1995)	[35]
N_3^-	PFB-Br	PFB- N_3	Extractive alkylation with ethyl acetate at 60 °C for 30 min (2000)	[38]
NO_2^- , and NO_3^-	PFB-Br	PFB- NO_2 , and PFB- ONO_2	Direct derivatization in acetone for 60 min at 50 °C following reduction to dryness under N_2 stream and reconstitution with toluene (2000)	[39]
F^- , Cl^- , Br^- , I^- , CN^- , CNO^- , N_3^- , NO_2^- , and NO_3^-	PFB-OTs	PFB-F, PFB-Cl, PFB-Br, PFB-I, PFB-CN, PFB-OCN, PFB- N_3 , PFB- NO_2 , and PFB- ONO_2	Extractive alkylation with 18-crown-6-ether and 15-crown-5-ether catalysts (2006)	[40]
Cl^- , Br^- , I^- , CN^- , SCN^- , S^{2-} , NO_2^- , and NO_3^-	$\text{R}_3\text{O}^+[\text{BF}_4]^-$ $\text{R} = \text{Me, Et}$	RCl , RBr , RI , RCN , RSCN , R_2S , RONO , and RONO_2	Direct aqueous alkylation at room temperature followed by headspace GC-MS (2009)	[41]

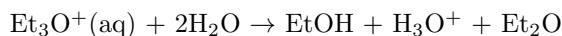
314 emulsions were observed during extraction. More recently
 315 Sakayanagi et al. [40] used extractive alkylation assisted
 316 by 18-crown-6-ether and 15-crown-5-ether for the determination
 317 of F^- , Cl^- , Br^- , I^- , CN^- , CNO^- , N_3^- , NO_2^- , and
 318 NO_3^- with a detection limit better than 30 ng in negative
 319 chemical ionization mode GC-MS. In the same study it
 320 was proved that SO_4^{2-} , $\text{S}_2\text{O}_3^{2-}$, ClO_3^- , and ClO_4^- do not
 321 generate PFB derivatives amenable to gas chromatography.
 322 PFB derivatization has been also employed to perform *direct alkylations*. In this case the reaction is
 323 generally carried out on a one-phase system. The aqueous
 324 sample is diluted with a water miscible organic solvent,
 325 such as acetone or acetonitrile, following reaction with the
 326 PFB reagent at temperature that can vary from ambient
 327 to 90 °C. After alkylation the reaction medium is re-
 328 duced to dryness under a stream of N_2 and the deriva-
 329

330 tives are reconstituted in an organic solvent like toluene
 331 or CH_2Cl_2 . The direct alkylation with PFB reagents can
 332 be improved using crown ethers such as the 18-crown-
 333 6 which can chelate potassium and ammonium cations
 334 leaving the bare anionic counterpart more active toward
 335 alkylation [50]. This approach found applications for the
 336 determination of several alkyl phosphates/phosphonates
 337 [51–53] along with CN^- , I^- , NO_2^- , NO_3^- , S^{2-} , SCN^- ,
 338 and CO_3^{2-} with interesting biomedical and forensic
 339 applications [39, 54–58]. More details about these methods
 340 will be provided in Paragraph 4. Despite the most com-
 341 mon PFB reagent is the PFB-Br [43], other pentafluorobenzylating
 342 agent have been reported. PFB-OTs was
 343 synthesized from TsCl and PFB-OH [44] and it was pre-
 344 ferred to PFB-Br because it allowed the determination
 345 of Br^- in biological samples [59] and several anions pro-
 346


346 viding cleaner chromatography: PFB-OTs was fully sep-
 347 arated from the analyte derivatives whereas the PFB-Br
 348 eluted at similar retention time as the analyte derivatives.
 349 due to its limited solubility in organic solvents other than
 350 chloromethanes, PFB-OTs was unsuitable for direct alky-
 351 lation [60] and was replaced by Tanaka et al. [60] with the
 352 pentafluorobenzyl methanesulphonate, and employed it
 353 with both extractive alkylation in dichloromethane (using
 354 tetra-namylammonium chloride as a phase-transfer cata-
 355 lyst) and direct derivatization in acetone. More recently, 2-
 356 (pentafluorophenoxy)ethyl 2-(piperidino)-ethanesulfonate
 357 was synthesized and used to react I^- , CN^- , NO_2^- , and
 358 SCN^- by extractive alkylation in toluene with tetra-*n*-
 359 hexyl ammonium bromide as phase transfer [61]:

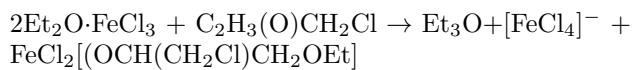

360 where the unreacted excess could be salinized by aque-
 361 ous acid treatment and removed from the toluene phase,
 362 minimizing its interferences during gas chromatogra-
 363 phy. The 2-(pentafluorophenoxy)ethyl 2-(piperidino)-
 364 ethanesulfonate was not active toward alcohols and amines
 365 showing some selectivity. Other PFB reagents were mainly
 366 employed in the derivatization of organic compounds. *O*-
 367 (2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride
 368 [62] and pentafluorophenylhydrazine [63] were used for the
 369 derivatization of carbonyls with low molecular weight under
 370 mild reaction conditions and pentafluorobenzyl chloro-
 371 formate was proposed for the determination of amino
 372 acids and alcohols [64]. As a general safety remark, care
 373 should be paid when handling PFB reagents. In particular
 374 PFB-Br is corrosive and a potent lachrymator [65] which
 375 should be used in a vented fumehood with adequate PPEs.
 376

377 3.2.2. Trialkyloxonium alkylation


378 The first preparation of trialkyloxonium salts ($R_3O^+[X^-]$,
 379 $R = Me, Et; X = BF_4, FeCl_3, SbCl_6$, etc.) dates back to
 380 1937 with the work of Meerwein and colleagues [66, 67].
 381 Since then a significant mole of organic and inorganic liter-
 382 ature has been devoted to study the properties of this
 383 class of alkylating agents [68–70]. The possibility of using
 384 trialkyloxonium salts to perform alkylation of simple in-
 385 organic anions directly in aqueous solution is known since
 386 1986 [71]. However, only in 2009 such derivatization chem-
 387 istry was employed in conjunction with GC-MS for the de-
 388 termination of Cl^- , Br^- , I^- , CN^- , SCN^- , S^{2-} , NO_2^- , and
 389 NO_3^- [41]. $Me_3O^+[BF_4]^-$ and $Et_3O^+[BF_4]^-$ (both com-
 390 mercially available) could perform alkylation of these in-
 391 organic anions accordingly to the following scheme:

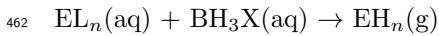
King et al. described these reactions as first-order nucle-
 394 ophilic substitutions S_N1 [71]:
 395

For the determination of inorganic ions an aqueous based chemistry is ideal because avoids the extraction of these polar analytes in organic solvents as other alkylation methods require. Both methyl and ethyl derivatives of the target analytes are volatile and can be sampled in the headspace allowing for their first order separation from the matrix. This key feature of the method results in baseline clean chromatography even for complex matrices like seawater [72] or biological fluids [73]. For analytical applications, ethylation with $Et_3O^+[BF_4]^-$ has been preferred over methylation. In fact, Et_3O^+ is more stable toward hydrolysis [69] and the Et-derivatives demonstrate better GC-MS figures of merits (higher mass and retention time). The method entails a simple sample preparation. An aqueous solution of triethyloxonium tetrafluoroborate is prepared just before use and it is added directly to the sample at room temperature following headspace GC-MS analysis. $Et_3O^+[BF_4]^-$ solutions undergoes acid hydrolysis within 80 minutes at 18 °C [69], therefore the reaction is quenched by the solvent:


In some cases the reaction medium should be buffered with ammonium hydroxide to prevent it turning acidic. For example an acid pH is undesirable when bromide is measured in a sample containing bromate [74]:

or when nitrite and nitrate are measured simultaneously [72, 75]:

Et_3O^+ can perform ethylation of halides and, therefore it can react F^- into EtF . Commercially available Et_3O^+ salts include tetrafluoroborate, hexachloroantimonate or hexafluorophosphate. None of these is a viable option for fluoride derivatization: $[BF_4]^-$ and $[PF_6]^-$ salts are blank limited whereas the application of $Et_3O^+[SbCl_6]^-$ would pose severe environmental concerns. To circumvent the issue we prepared $Et_3O^+[FeCl_4]^-$ [76] accordingly to a known procedure [67]:



This reagent was successfully employed for the determination of fluoride in several matrices like seawater and urine with detection limits in the part-per-billion range. In this case, the conversion of F^- to EtF was carried out an alkaline ammonia buffer for the precipitation of $Fe(III)$ and other cations that could complex fluoride ions interfering

443 with the alkylation. Despite possible health hazard associated
444 with alkylating agents, the risks handling Et_3O^+ salts
445 are restrained by the non-volatile nature of these chemicals.
446 As many tetrafluoroborates, $\text{Et}_3\text{O}^+[\text{BF}_4]^-$ is hygroscopic
447 and moisture sensitive, therefore it should be kept
448 at -20 °C and handled in a fumehood for the shortest
449 period of time.

450 3.3. Hydride Generation

451 Chemical generation of volatile hydrides (CHG) has been
452 recognized for more than 45 years as a valuable tool for
453 the analysis of trace and ultra-trace elements such as As,
454 Se, Sn, Sb, Te, Bi, and Ge [77–81]. Despite hydride genera-
455 tion is a typical sample introduction technique for atomic
456 spectroscopy, also gas-chromatography has been applied in
457 conjunction with CHG. Hydride generation is performed
458 by aqueous phase reaction of the analytes with a strong ex-
459 cess ($> 10^3$ mole/mole) of tetrahydroborate (THB) salts
460 (NaBH_4 , KBH_4) or, less frequently, amine borane com-
461 plexes BH_3X ($\text{X} = \text{NH}_3$, $t\text{-BuNH}_2$, Me_2NH) [82, 83]:

463 Molecular aspects of aqueous THB chemistry for analytical
464 determinations have been recently reviewed [84–87]. The
465 generation of volatile hydrides is the results of two com-
466 petitive processes: the hydride formation and the THB
467 hydrolysis. CHG does not necessarily entail reduction of
468 the element: for example when arsenite is converted into
469 AsH_3 , arsenic oxidation state remains +3. Under ideal
470 analytical conditions, the final hydride is formed stepwise,
471 by direct transfer of the hydride from borane to analyte
472 atom. The chemical identity of CHG products depends on
473 analyte concentration and on THB/analyte molar ratio.
474 Under analytical condition (analyte $< 10^{-5}$ M, $10^{-2} <$
475 $\text{THB} < 1$ M) formation of a single derivatives (the bi-
476 nary hydride EH_n , E = Ge, Sn, Pb, As, Sb, Bi, Se, Te,
477 and Hg) is observed (Table 2). The stability of metal hy-
478 drides decreases with higher atomic weight elements [84].
479 Furthermore, the increase of analyte concentration may
480 lead to formation of dimeric and polymeric hydrides and
481 other solid reaction byproducts which remains in the con-
482 dense phase [88]. Anionic species are not reactive in CHG,
483 but their reactivity can be enhanced by protonation, and
484 the activation toward hydride attack increases in the order
485 A^- , AH , AH^+ . Anionic species arising from dissociation
486 of strong mineral acids are not reactive to THB derivati-
487 zation. Anionic species of the weak oxoacids of hydride
488 forming elements reported in Table 3 are the less reactive
489 than cationic ones. Since the efficiency of CHG is strongly
490 dependent on the acidity of the solution, for simultaneous
491 determination a compromise has to be made in regard to
492 the choice of acid concentration. Sample aliquots can be
493 derivatized at different pH and analyzed separately with
494 a non-chromatographic setup [89]. Alternatively, species-
495 specific CHG can be attained by progressive variation of
496 the reaction condition. Diaz-Bone and Hitzke [90] created

497 a pH-gradient, by lowering the pH from 7 to 1 while con-
498 tinuously adding NaBH_4 . By doing so, all investigated analytes (methylated Ge-, As-, Sn-, Sb-, Te- and Hg-species)
499 were successively derivatized at the highest pH possible in
500 order to minimize rearrangement reactions. An additional
501 issue in CHG is represented by the interferences which
502 can affect both reaction yield and molecular mechanism of
503 derivatization [77, 87]. Interference mostly arises from in-
504 teraction between analyte/interferent/THB; for example,
505 THB can convert transition metals in nanoparticle which
506 can adsorb/degrade the hydride and promote competitive
507 THB hydrolysis [91–93]. Furthermore, hydride forming
508 elements can also interfere with the analytical substrate
509 [94, 95]. Interference control can be attained by modula-
510 tion of reaction conditions (pH and type of acid, reagent
511 concentration, geometry and design of CHG apparatus),
512 and by the use of additives [86]. When these measures
513 fails, separation techniques, such as extraction, coprecipi-
514 tation and ion chromatography, can be employed to al-
515 leviante interference effects [77]. Artifacts from hydride
516 generation have been reported from organometallic sub-
517 strates containing element-carbon bonds ($\text{R}_x\text{EL}_{n-x}$: R =
518 alkyl, phenyl; L is a ligand). In some cases the aque-
519 ous borane reagent could perform the breakdown of E-
520 C bonds leading different $\text{R}_x\text{EL}_{n-x}$ species to the same
521 derivative [96–99] resulting in issues when speciation is
522 required. Despite a successful hydride generation exper-
523 iment requires a careful control of reaction conditions, this
524 technique is widely employed for trace metal determina-
525 tion and speciation. Due to the volatile nature of the
526 derivatives, gas-chromatography is a suitable separation
527 technique for stable hydrides-forming elements which in
528 combination with MS and ICPMS detection can provide
529 high selectivity and sensitivity. Several methods have been
530 proposed in literature for classical element forming hydride
531 by gas-chromatography [90, 97, 100–127]. Furthermore
532 also phosphate in seawater has been measured by hydride
533 generation [128]. For this purpose, a mixed solution of an
534 equal amount of sample and 6% NaBH_4 was dried at 40 °C
535 with an infrared lamp. The dried mixture was inserted in
536 a reaction tube heated at 460 °C, and the generated phos-
537 phine was trapped in a cooled U-tube before introduction
538 into the GC with a flame photometric detector. The pro-
539 cedure was validated against the molybdenum-blue colori-
540 metric method with persulfate digestion, obtaining a good
541 agreement. The CHG method eliminates the problems of
542 interference from arsenic, silica, or other materials that
543 can affect colorimetric determination of phosphate. In the
544 last twenty years, most of the CHG-GC applications have
545 been focused on the speciation of arsenic oxoacids, mostly
546 occurring in anionic form. Paragraph 4.5 is focused on dis-
547 cussion of late GC applications for determination of such
548 compounds.

Table 2: Reaction products obtained in CHG under analytical conditions for some inorganic and organometallic substrates

Element	Derivative	b.p.	Comments	Ref.
Ge(IV)	GeH ₄	-88 °C	Stable covalent hydride. With high Ge concentration, or under non analytical conditions, H ₃ Ge-GeH ₃ and polymeric germanes are formed	[77, 87]
Sn(II) Sn(IV)	SnH ₄	-52 °C	Stable covalent hydride. With high Sn concentration, or under non analytical conditions, H ₃ Sn-SnH ₃ and polymeric stannanes are formed	[77, 87]
Pb(II)	PbH ₄	-13 °C	PbH ₄ is obtained in good yield only in the presence of oxidants. Thermally unstable	[77, 87]
As(III) As(V)	AsH ₃	-62 °C	Stable covalent hydride. At high As concentration, or under non analytical conditions, H ₂ As-AsH ₂ and polymeric arsane are formed	[88]
MeAsO(OH) ₂ MeAs(OH) ₂	MeAsH ₂	-18 °C	Stable covalent hydrides. Mono-methyl As(III) and As(V) yield same derivative. Under certain conditions demethylation was observed. With high As concentration, or under non analytical conditions, polymeric (methyl)arsanes are formed.	[99, 129]
Me ₂ AsO(OH) Me ₂ As(OH)	Me ₂ AsH	16 °C	Stable covalent hydrides. Di-methyl As(III) and As(V) yield same derivative. Under certain conditions demethylation was observed. With high As concentration, or under non analytical conditions, Me ₃ As and Me ₄ As ₂ are the main products.	[99, 130]
Me ₃ AsO	Me ₃ As	32 °C	Risk of demethylation during derivatization	[99]
Sb(III) Sb(V)	SbH ₃	-17 °C	Stable covalent hydride. Lower reaction yield from Sb(V); Sb(III) is the preferred form for CHG.	[77, 87]
Bi(III)	BiH ₃	17 °C	Thermally unstable. Forms black Bi precipitate at high analyte concentration.	
Se(IV)	H ₂ Se	-41 °C	Acid hydride: H ₂ Se + H ₂ O ⇌ HSe ⁻ + H ₃ O ⁺ pK ₁ = 3.0. At high Se concentration Se(0) is formed. Se(VI) is not reactive in CHG	[131, 132]
R ₂ SeO R ₂ SeO ₂ R ₃ SeO ⁺	R ₂ Se		Dialkylselonoxides and dialkylselenones are reduced to stable, volatile R ₂ Se. Trialkyl selenonium species are dealkylated to R ₂ Se	[97, 132]
RSe-SeR RSeO(OH)	RSeH		Dialkylselenides and seleninic acids are reduced to selenols.	[132]
Te(IV)	H ₂ Te	-2 °C	Acid hydride: H ₂ Te + H ₂ O ⇌ HTe ⁻ + H ₃ O ⁺ pK ₁ = 2.6. Thermally unstable. Forms black Te precipitate at high analyte concentration. Te(VI) is not reactive in CHG	[131, 132]

550 4. Applications

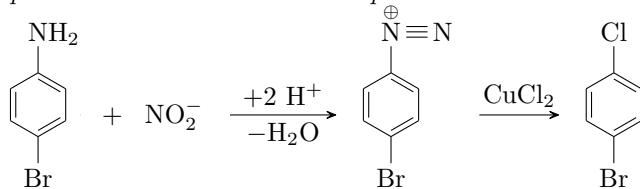
551 In this section, several GC applications for anions determination are described with attention to the performance
552 attained using various derivatization approaches. The use
553 of GC-MS has been particularly beneficial for quantitative
554 determination of nitrite and nitrate in biological fluids
555 (Paragraph 4.1) and for qualitative confirmation of mono-
556 and di- alkyl phosphates and phosphonates listed in the
557 Chemical Welfare Convention (Paragraph 4.3). GC has was
558 also applied for the determination of cyanide, sulfide and

559 thiocyanate (Paragraph 4.4), arsenic and selenium oxyanions
560 (Paragraphs 4.5 and 4.6), and halides (Paragraph 4.8).
561

562 4.1. Nitrite and Nitrate

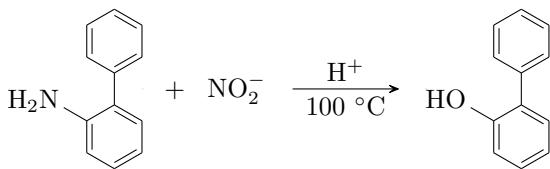
563 The determination of nitrite and nitrate is of great interest
564 in many fields. For example, speciation of NO₂⁻ and NO₃⁻
565 have been attained in clinical samples for understanding
566 the so-called NO₃⁻, NO₂⁻ NO pathway [133, 134]. NO₂⁻
567 and NO₃⁻ analysis is also relevant in oceanography [135]
568 for monitoring variations of marine biogeochemistry [136-
569

Table 3: Equilibrium constants for some analytical species involved in CHG [131]

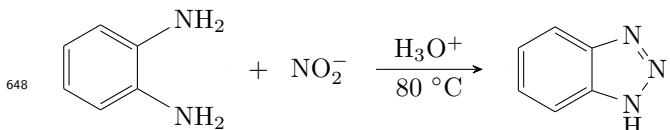

Element	Aqueous form	pK_1	pK_2	pK_3
Ge(IV)	$O=Ge(OH)_2$ $Ge(OH)_4$	9.02	12.83	-
As(III)	H_3AsO_3	9.4	13.5	-
As(V)	H_3AsO_4	2.19	6.94	11.50
	$MeAsO(OH)_2$	3.6	8.2	-
	$Me_2AsO(OH)$	6.2	-	-
Sb(III)	$SbO^+ + H_2O \rightleftharpoons HSbO_2 + H_3O^+$	0.82	-	-
	$HSbO_2 + H_2O \rightleftharpoons [Sb(OH)_4]^- + H_3O^+$	-	11.0	-
Sb(V)	$H[Sb(OH)_4] + H_2O \rightleftharpoons [Sb(OH)_6]^- + H_3O^+$	2.55	-	-
Se(IV)	$O=Se(OH)_2$	2.62	8.32	-
Se(VI)	H_2SeO_4	strong	1.66	-
Te(IV)	$O=Te(OH)_2$	2.7	7.7	-
Te(VI)	H_6TeO_6	7.70	10.95	-

140] and for determination of residual fertilizers or additives in food [141]. In such variety of samples, NO_3^- and NO_2^- levels are widespread and they can range from nM in oligotrophic seawaters [135] to μM -mM levels in biological fluids [142] and up to several mM in food samples [141, 143]. For these reasons, many analytical methods have been developed for the determination of NO_2^- and NO_3^- in complex matrices. The historical approach for NO_2^- and NO_3^- measurement is based on the Griess assay which employs the diazotisation with sulphanilamide followed by reaction with *N*-(1-naphthyl)-ethylenediamine in acid medium to form a colored azo-dye detected at 540 nm. This reaction is specific for nitrite but does not work for nitrate which first needs to be reduced. $NO_2^- \rightarrow NO_3^-$ conversion is usually attained on a Cd/Cu column whose limited efficiency and reproducibility are the first concerns for precision work [144–146]. For example, with this method biases up to 60% were observed for nitrate analysis in vegetable extracts [145]. Several other approach have been published and reviews for nitrate and nitrite detection were presented in 2001 by Moorcroft et al. [147] and in 2017 by Wang et al. [148]. Most literature methods for NO_2^- and NO_3^- determination rely on spectrophotometry, chemiluminescence, or electrochemical detection with eventual hyphenation with separation techniques like ion chromatography [149] or capillary electrophoresis [150]. However, such approaches have limitations when complex matrices are analyzed and the implementation of GC-MS can be beneficial when the classical methods cannot reach the necessary sensitivity and selectivity or need validation [151]. Reviews focused on measurement of nitrite and nitrate by GC-MS in clinical samples were published by Smythe and Matanovic in 2002 [152] and by Helmke et al. [153] in 2007. In the following paragraph our discussion will be focuses on derivatization approach used for nitrite

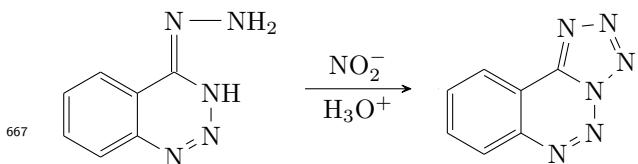
and nitrate conversion into molecules suitable for gas chromatography with applications to complex matrices (Table 4).


4.1.1. NO_2^- and the diazotisation reaction

The diazotization reaction is a milestone in the analytical chemistry of nitrite. First proposed by Peter Griess in 1858 [154], this reaction has been widely applied for the determination of nitrite and here we will review gas chromatography methods which make use of such reaction. Already in 1980 Funazo et al. converted NO_2^- with *p*-bromoaniline and Cu^{2+} into *p*-bromochlorobenzene:



This aqueous reaction was performed on 1 mL of sample with 1 mL *p*-bromoaniline 1 mM in HCl 1N and 1 mL toluene with internal standard. After few minutes the diazonium salt was react with Cu^{2+} at room temperature for 2 h under shaking following analysis of the derivative extracted in toluene with a 100% conversion yield. The method was employed for analysis of river water, saliva, and food samples with detection limit of 10 ppb with a GC-ECD. A similar approach was proposed by the authors two years later by converting nitrite and *m*-nitroaniline into nitrobenzene with detection limit of 0.5 ppb with a dinamic range up to 1.00 ppm on the GC-ECD. Such approach however, produce a derivative that does not contain the molecular signature of the analyte making the method unsuitable for isotope dilution GC-MS [155]. Similarly, conversion of nitrite with 2-aminobiphenyl in aqueous acidic medium into 2-phenylphenol was employed for the determination fo nitrite in water samples:

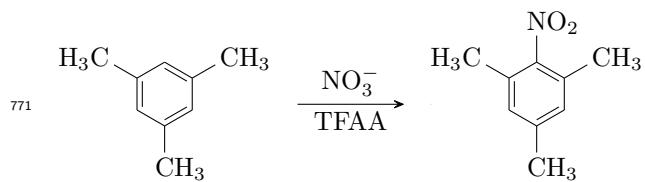

634

635 In this case the water sample (0.5-3 mL) was reacted with
 636 500 μL of 2-aminobiphenyl 30 mM in 1:1 $\text{H}_2\text{SO}_4:\text{H}_2\text{O}$ keeping
 637 the reaction mixture at room temperature for 3 min.
 638 Resulting diazonium ion was hydrolyzed at $100\text{ }^\circ\text{C}$ for 5
 639 min to the corresponding 2-phenylphenol. With this tech-
 640 nique detection limits in the low part-per-trillion were re-
 641 ported with both GC-FID [156] and GC-MS-MS [157].
 642 Aromatic vicinal diamines have also been employed for
 643 nitrite derivatization. In this case the diazonium group,
 644 formed upon reaction of NO_2^- with the amine, reacts with
 645 the second aminic group on the aromatic ring to yield a
 646 triazole derivative. In 1980 Tanaka et al. employed such
 647 reactivity starting from 1,2-diaminobenzene [158]:

648 The 1H-benzotriazole was formed after 10 min at $80\text{ }^\circ\text{C}$ at pH 1.0-1.5. Such derivative was extracted in ethyl ac-
 649 etate after saturation of the aqueous solution with NaCl . The organic phase was then evaporate to dryness and re-
 650 constituted in BSA for silylation of the -NH group on the triazole ring. With a GC-FID the method was applied for
 651 the determination of NO_2^- in food with detection limit of
 652 0.31 ppm. The gas chromatographic properties of thir-
 653 teen benzotriazole prepared from nitrite were discussed
 654 by Dilli and Patsalides in 1983 [159]. The use of 1,2-
 655 diaminobenzene as reagent for nitrite has the disadvantage
 656 of resulting in a compound which is still polar and need
 657 further silylation. This drawback could be bypassed by
 658 using a higher molecular weight compound. For example
 659 the 1-hydrazinophthalazine was use in acidic medium to
 660 convert nitrite in tetrazolophthalazine which could be ex-
 661 tracted in organic solvent and analyzed by GC-ECD with
 662 a detection limit of 2 ng/mL:

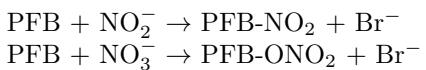
667 In this derivative there are no hydrogens that need to
 668 be silylated. This derivatization was applied for the de-
 669 termination of nitrite in milk [160] with good spike re-
 670 coversies. The most recent application that uses an aro-
 671 matic vicinal diamines to convert NO_2^- was proposed by
 672 Akyüz and Ata in 2009 [161]. In a similar fashion, the 2,3-
 673 diaminonaphthalene reacted NO_2^- in 2,3-naphthotriazole

674 in an acidic environment. The method was applied for the
 675 determination of nitrite and nitrate in biological, food and
 676 environmental samples with instrumental detection limits
 677 of 0.02 and 0.03 pg/mL for NO_2^- and NO_3^- with a linear
 678 range of 2.5–100 pg/mL . In this case, the analysis of nitrate
 679 was indirect and based on the its enzymatic reduction to
 680 nitrite. Finally, diazotisation was employed for conversion
 681 of nitrite in an azo-dye known as Sudan-1 [162]. A reagent
 682 solution of 4 g/L aniline sulphate was prepared weekly in
 683 3M HCl and stored at $4\text{ }^\circ\text{C}$. An aliquot of sample was then
 684 treated with this 200 μL of this reagent (pH ~ 2) and after
 685 5 minutes with 200 μL of 2.08 g/L 2-naphthol in NaOH
 686 3M following extraction of the Sudan-1 on a SPE C-18 car-
 687 tridge. This derivative was then eluted with ethyl acetate
 688 and following air drying. Due to the polarity given by
 689 an hydroxyl group, the Sudan-1 needed further derivatization
 690 before analysis. Silylation was in fact obtained with
 691 5 μL MTBSTFA in 45 μL of ethyl acetate at $75\text{ }^\circ\text{C}$ for
 692 30 min. Detection was attained in EI GC-MS monitoring
 693 in SIM mode the typical $[\text{M}-59]^{+}$ fragment. The method
 694 was employed for the determination of nitrate in seawater.
 695 The authors proposed first reduction of NO_3^- to NO_2^- with a copper/cadmium column. Even if reduction was
 696 not quantitative (30% to 60% efficiency), the isotope dilution
 697 approach corrected for analyte loss. Since the method
 698 respond to nitrite, this modus operandi is acceptable only
 699 for samples that do not contain significant amount of nit-
 700 rite. In fact, nitrite is a positive interference to this assay
 701 which is most significant when NO_3^- to NO_2^- reduction is
 702 attained with poor yield. The Sudan-1 method was used
 703 by Clark et al. in 2007 [163] for NO_2^- and NO_3^- specia-
 704 tion in oligotrophic seawaters where NO_2^- and NO_3^- levels
 705 were $<2\text{ nmol/kg}$ and $<5\text{ nmol/kg}$ respectively and by
 706 Houben et al. in 2010 [164] for ^{15}N -nitrate determination
 707 in urine by gas chromatography combustion isotope ratio
 708 mass spectrometry. The method was applied for monitor-
 709 ing in vivo ^{15}N -arginine metabolism and endogenous NO
 710 production. The major limitation of this approach lies
 711 with the need to reduce NO_3^- to NO_2^- which is difficult to
 712 control and makes nitrate estimation indirect.

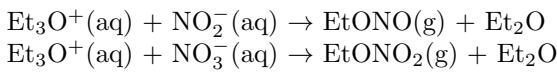

715 4.1.2. NO_3^- and the nitration reaction

716 Nitration of an aromatic rings is a specific reaction for
 717 nitrate which has been used in conjunction with gas chro-
 718 matography. Already in 1974 Glover and Hoffsommer em-
 719 ployed the following reactivity [165]:

720 This is an electrophilic aromatic nitration which proceed
 721 through the attach of NO_2^+ on the benzene ring [166]. For-
 722 mation of NO_2^+ from NO_3^- is promoted by H_2SO_4 and re-
 723 sulting nitro-derivative contains nitrogen from native NO_3^-
 724 which could be used for isotope dilution quantitation (^{15}N -
 725 labeling). Since NO_2^+ rapidly exchange oxygen with the


727 solvent, isotopic labeling on oxygen cannot be proposed
 728 for isotope dilution. The authors treated 5 mL of water
 729 sample with 5 mL of benzene following addition of 15 mL
 730 $H_2SO_4:H_2O$ 3:1 under stirring [165]. Reaction mixture was
 731 placed in a water bath at 75 °C for 5 min and resulting
 732 nitrobenzene (> 90% conversion efficiency) was analyzed
 733 by GC-ECD. Due to the massive amount of H_2SO_4 re-
 734 quired, the detection limit of the method was penalized
 735 by its high blank (0.12 ppm). Such an approach was later
 736 used by Tesch et al. [167] for the determination of NO_2^-
 737 and NO_3^- in saliva and blood with quantitation limit of
 738 0.1 ppm nitrate in a single drop of sample by GC-ECD.
 739 Similarly, Johnson et al. [168] measured nitrate in serum
 740 and urine by GC with nitrogen-phosphorous detector (0.06
 741 ppm detection limit). Variations on this chemistry have
 742 been proposed in order to avoid using toxic benzene in a
 743 highly acidic medium. Gutzki et al. [169] replaced benzene
 744 with 2,4,6-trimethoxybenzene. Detection of 1-nitro-2,4,6-
 745 trimethoxybenzene was obtained by GC-MS/MS in nega-
 746 tive chemical ionization mode with a low detection limit
 747 of 200 pg absolute (2 μ L injection volume). The method
 748 was suitable for the measurement of $NO_2^- + NO_3^-$ by iso-
 749 tope dilution ($^{15}NO_2^-$ internal standard) and it was ap-
 750 plied to biological samples. Nitration of 2-methylphenol or
 751 2,6-dimethylphenol in H_2SO_4 medium was proposed for ni-
 752 trate determination in water samples [170]. The derivative
 753 was preconcentrated on a SPE cartridge obtaining 100-fold
 754 enrichment with a detection limit of 3 μ g/L. Smythe et al.
 755 [171] proposed an alternative approach based on trifluo-
 756 roacetic anhydride (TFAA) catalyzed nitration of toluene.
 757 The use of TFAA instead of H_2SO_4 allowed for milder re-
 758 action conditions avoiding degradation of nitroarginine to
 759 nitrate which was quantitative in H_2SO_4 medium. Nitra-
 760 tion of toluene however, give rise three nitrotoluene iso-
 761 mers. Reported relative ratio between such isomers was
 762 57:3:40 for *ortho:meta:para* with a detection limit better
 763 then 100 fmol on column. The reaction was held in a non-
 764 aqueous medium with 200 μ L TFAA and 1 mL of toluene
 765 at 70 °C for 60 min. The solution was then washed with
 766 water and 1% sodium bicarbonate before GC-MS analysis.
 767 The method was applied for plasma and urine. A similar
 768 approach was proposed in 2008 by Jackson et al. [172]
 769 who replaced toluene with 1,3,5-trimethylbenzene. As an
 770 advantage, only one derivative was detected:

772 Nitration of the aromatic ring is a reaction specific only for
 773 nitrate. However, in an acidic medium, endogenous nitrite
 774 can be partially converted to nitrate giving positive inter-
 775 ference. To avoid such effect the analyst could eliminate
 776 nitrite with sulfamic acid before derivatization or convert
 777 all NO_2^- to NO_3^- using an oxidant like H_2O_2 or $KMnO_4$.


4.1.3. NO_2^- and NO_3^- : the alkylation approach

778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 Alkylation is a very popular approach for the determina-
 tion of nitrite and nitrate by gas chromatography. The
 use of PFB-Br has been proposed by several authors
 [39, 47, 49, 54, 56, 173–179] with publications on the topic
 already in 1984 [173]. The use of PFB-Br for gas chro-
 matographic determination of nitrite and nitrate was re-
 cently reviewed by Tsikas [43] who was among the first
 to apply PFB-Br chemistry for simultaneous determina-
 tion of nitrite and nitrate in biological fluids [39]. Tsikas'
 method entails direct alkylation of NO_2^- and NO_3^- in ace-
 tone medium. For this purpose 100 μ L of aqueous sample
 with internal standards ($^{15}NO_2^-$ and $^{15}NO_3^-$) were diluted
 with 400 μ L of acetone and reacted with 10 μ L of PFB-
 Br. This mixture was held at 50 °C for 60 min allowing
 formation of PFB derivatives:

796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 The reaction medium was then evaporated under a stream
 of nitrogen and the residue was solubilized in toluene fol-
 lowing GC-MS analysis in negative chemical ionization.
 When 100 μ L of 1 μ M $^{15}NO_2^-$ and $^{15}NO_3^-$ aqueous stan-
 dard where analyzed, a signal-to-noise ratio of 870 and 95
 was obtained respectively. The method was sensitive and
 specific for simultaneous analysis of nitrite and nitrate in
 biological fluids [39, 177–179]. A significant improvement
 of this method was recently proposed by Yang et al. [56].
 Tetraoctylammonium bromide was employed to catalyze
 the pentafluorobenzylation of NO_2^- and NO_3^- . The pro-
 cedure entails dilution of 350 μ L of aqueous sample and
 internal standards ($^{15}NO_2^-$ and $^{15}NO_3^-$) with 500 μ L of
 8.0 mM tetraoctylammonium in acetone and 50 μ L 20%
 PFB-Br in acetone following reaction for 30 min at 50
 °C. Sample were reconstituted in isooctane after evapora-
 tion under a stream on N_2 . Respect to the non-catalyzed
 method, this approach allowed an increase of derivatiza-
 tion yield of 4.5 times for nitrite and 55 times for nitrate.
 The mechanistic aspect of this catalysis however, are not
 clear and will need further investigation. Another varia-
 tion to the theme was proposed in 2002 by Kage et al. [54].
 The authors preferred the extractive alkylation scheme for
 simultaneous determination of nitrite and nitrate in blood.
 With GC-MS in negative ionization mode a detection limit
 of 5 μ M was proposed for both nitrite and nitrate, higher
 than thus reported with direct alkylation [39].

831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 Despite the PFB method has a number of qualities such as
 good sensitivity and specificity, one drawback is the timely
 sample preparation. For this reason we implemented an
 alternative derivatization chemistry for nitrite and nitrate
 base on triethyloxonium tetrafluoroborate alkylation [72,
 75, 180]:

831 A 3 mL sample aliquot was treated with 0.3 mL isotopically
832 enriched internal standard ($\text{N}^{18}\text{O}_2^-$ and NO_3^-) following
833 direct aqueous derivatization with 1 mL freshly prepared
834 $\text{Et}_3\text{O}^+[\text{BF}_4]^-$ solution (1 g of reagent was dissolved
835 in 10 mL of water at 4 °C with 700 μl of 25% NH_3 aqueous
836 solution). After 30 min at room temperature, GC-MS
837 analysis of the vial headspace was performed in negative
838 chemical ionization mode with detection limits in the part-
839 per-billion range. The $\text{NH}_3/\text{NH}_4^+$ buffer kept the pH of
840 the reaction between 9 and 10. This condition is essential
841 in order to avoid oxidation of nitrite to nitrate and
842 oxygen exchange between nitrite and water which can occur
843 in acidic medium. This sample preparation can be
844 modified for the determination of nitrate. In this case
845 the sample was spiked with NO_3^- and treated with sul-
846 famic acid to remove NO_2^- . At this point the blend was
847 reacted with $\text{Et}_3\text{O}^+[\text{BF}_4]^-$ without the need for an alkaline
848 buffer which cause a reduction in the derivatization
849 efficiency due to a faster hydrolysis rate of the reagent.
850 When compared to the direct alkylation with PFB-Br,
851 the derivatization with $\text{Et}_3\text{O}^+[\text{BF}_4]^-$ has important pro-
852 cedural advantages: $\text{Et}_3\text{O}^+[\text{BF}_4]^-$ is a single stage aqueous
853 derivatization which allow separation of the derivative
854 from the matrix under gaseous form (headspace sampling).
855 Pentafluorobenzylation is achieved in several steps result-
856 ing in an organic extract which can contain still matrix
857 components that can deteriorate the chromatographic column
(Figure 1). The $\text{Et}_3\text{O}^+[\text{BF}_4]^-$ method was employed

866

Figure 1: Procedural advantages of $\text{Et}_3\text{O}^+[\text{BF}_4]^-$ over PFB-Br derivatization. The first (on the left) is a single stage aqueous reaction resulting in gaseous derivatives separated from the matrix. The second (on the right) is a non-aqueous alkylation in acetone which requires heating at 50 °C for 60 min, evaporation under nitrogen of the reaction medium and reconstitution in toluene

858 for the simultaneous determination of nitrite and nitrate
859 in seawater sample and applied for the characterization of
860 MOOS-3 Certified Reference Materials (CRMs) for nutri-
861 ents in seawater. The use of isotope dilution formalism for
862 quantitation allowed collection of high-precision data: re-
863 sults from a 19 months study of the MOOS-3 are proposed
864 in Figure 1 and demonstrate the ability of our method
865

to perform NO_2^- and NO_3^- determination within a relative standard uncertainty of 1%. Recently we adapt the

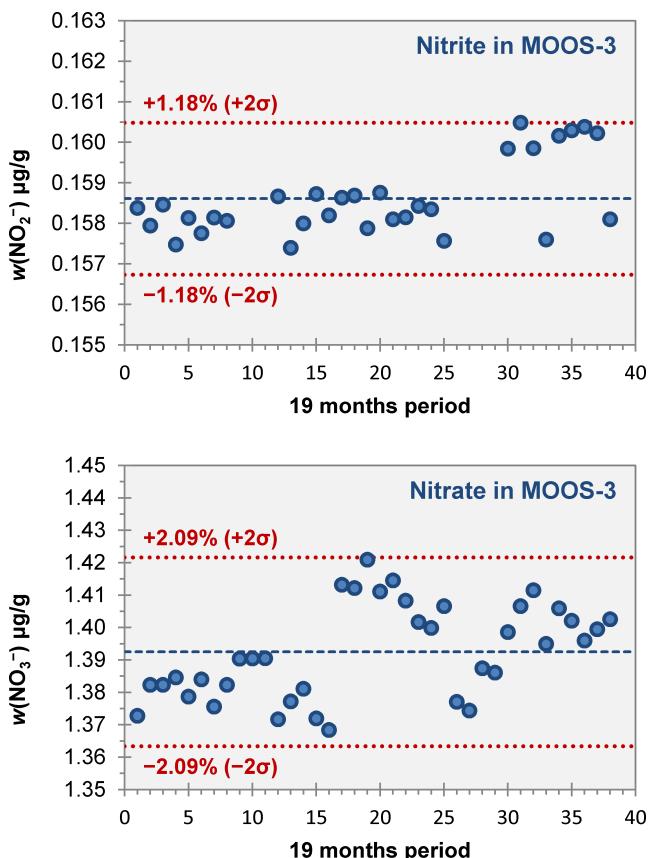


Figure 2: Determination of NO_2^- and NO_3^- in MOOS-3 by isotope dilution GC-following aqueous ethylation with $\text{Et}_3\text{O}^+[\text{BF}_4]^-$: a 19 months study

$\text{Et}_3\text{O}^+[\text{BF}_4]^-$ method for the determination of nitrate in vegetables by gas chromatography [181]. The analyte was extracted from the matrix in water at 70 °C and spiked with the $^{15}\text{NO}_3^-$ internal standard. After centrifugation, a 2 mL volume of supernatant was treated with 100 μL 1% sulfamic acid and derivatized with 50 μL of $\text{Et}_3\text{O}^+[\text{BF}_4]^-$ prepared in acetonitrile by mixing the 1 g of solid reagent with 1 mL of solvent at -20 °C. The reaction was left for 30 min at room temperature following manual sampling of the headspace and GC-MS analysis. Chromatography was completed within 1.8 min on a DB-5.625 and it was applied to quantify nitrite in vegetables in the range 10–10,000 $\mu\text{g/g}$ with a detection limit of 2 $\mu\text{g/g}$ on the fresh vegetable matrix in EI mode.

4.1.4. Other derivatization for NO_2^-

Another couple of methods are reported for nitrite analysis by gas chromatography. In 1993 Mitsuhashi [182] used the 3-oxobutanoate to convert NO_2^- in aqueous HCl to 2-hydroxyimino-3-oxo-butanoate. The derivative was produced with quantitative yield and it was extracted in ethyl acetate before GC-ECD analysis. Nitrite determination in

13

889 river and human saliva was attained with a detection limit
890 of 2 ng/mL. In 2010 Tsikas et al. [183] proposed a method
891 for the determination of nitrite in biological fluids using
892 an on-column derivatization approach. The sample were
893 acidified with HCl to reach pH 2. In this condition, the
894 acid-base equilibrium of nitrite ($pK_a = 3.29$) was shifted
895 toward the nitrous acid which could be extracted in ethyl
896 acetate. The reaction mixture was injected in the GC-MS
897 system working in negative chemical ionization and a sig-
898 nal at m/z 46 Da was detected (m/z 47 Da for the internal
899 standard $^{15}\text{NO}_2^-$). The derivative could not be identified
900 and the reaction efficiency was dependent on the injec-
901 tor temperature which was set at 300 °C. The method
902 was applied for nitrite determination in biological fluids,
903 but only saliva and urine could be successfully analyzed:
904 plasma and serum contain endogenous nucleophilic com-
905 pounds which react HONO before extraction.

906 4.2. Orthophosphate

907 The determination of orthophosphate is generally per-
908 formed using molybdenum chemistry [258] followed by
909 spectrophotometry detection. PO_4^{3-} is firstly reacted with
910 ammonium molybdate to form $\text{H}_3\text{PO}_4(\text{MoO}_3)_{12}$ which is
911 then reduced with ascorbic acid to a colored blue product
912 detectable at 890 nm [258]. This century-old method re-
913 mains the reference for the determination of phosphate in
914 water and seawater [135, 144]. The use of spectrophotom-
915 etry however, presents limitations when complex matrices
916 are analyzed and alternative methods based on gas chro-
917 matography are reported in the analytical literature. The
918 first attempt to convert orthophosphate in a volatile TMS-
919 derivative was described in the sixties [259, 260] with the
920 idea of applying gas chromatography for the analysis of
921 sugar phosphates and nucleotides. Hashizume et al. [261]
922 measured total phosphorus in nucleotides by digesting the
923 sample with perchloric acid following conversion of result-
924 ing PO_4^{3-} to TMS_3PO_4 by trimethylsilylation. For this
925 purpose the dry digested sample (10 mg) was suspended
926 in pyridine (0.2 mL) and reacted with HMDS (0.2 mL)
927 and TMCS (0.1 mL) at 140-150 °C for 1 hour. As noted
928 by other authors [23], the silylation yield depended on the
929 nature of the phosphate salts analyzed: alkali-phosphates
930 like sodium or potassium were associated with a low sily-
931 lation yield whereas with ammonium salts the derivatiza-
932 tion was almost quantitative [261]. Matthews et al. used
933 the silylation approach for the determination of orthophos-
934 phate in water after analyte extraction in toluene-octanol
935 mixture using Adogen-464- HCO_3^- as phase transfer cat-
936 alyst. The derivatization of the organic phase was per-
937 formed at room temperature for 15 minutes with BSTFA
938 - 1% TMCS with a detection limit of 100 ppb PO_4^{3-} us-
939 ing a flame-photometric detector. Smillie et al. [262]
940 measured both phosphite and phosphate in plant extracts
941 by GC-MS under the form of TBDMS ester. The plant
942 extract sample (50-100 μL) was dried under vacuum fol-
943 lowing the addition of pyridine (50 μL) and MTBSTFA
944 (100 μL). The derivatization was complete within 4 hours

945 at room temperature. The reported detection limit with
946 mass spectrometry detection was 100 pg. Bierhanzl et al.
947 [263] employed the HMDS and BSTFA for the full sily-
948 lation of orthophosphate (and other organo-phosphates)
949 and applied the method for the GC-MS determination of
950 PO_4^{3-} in aqueous fraction of the cell membrane lysate of
951 *textit{Bacillus subtilis}*. Alternatives approaches for phos-
952 phate analysis are generally based on alkylation. *n*-butyl
953 iodide was employed to react PO_4^{3-} to $n\text{Bu}_3\text{PO}_4$ [33]. The
954 preparation of trimethyl phosphate by diazomethane was
955 reported by Brunengraber [264] in a study dedicated to
956 the determination of ^{18}O enrichment of water in biologi-
957 cal fluids after reaction with phosphorus pentachloride and
958 by Hardy [200] for the determination of phosphate, mono-
959 and di- alkyl phosphate in tri-*n*-butylphosphate.

960 4.3. Mono-, di- alkylphosphates and phosphonates

961 Organophosphate compounds have been widely used to
962 produce insecticides, herbicides, warfare agents, plasti-
963 cizes and EP additive. Mostly employed compounds in-
964 cludes the alkyl esters of phosphoric acid, phosphonates
965 and corresponding thio-analogues. The stability of these
966 compounds in environment and human body is limited by
967 disposition of PO-R and PS-R bounds to hydrolysis. For
968 this reason, target analytes which demonstrate exposure to
969 these contaminants include their degradation byproducts
970 such as dimethylphosphate, diethylphosphate, dimethylthi-
971 ophosphate, diethylthiophosphate, dimethyldithiophos-
972 phate, and Diethyldithiophosphate [226-228]. A signifi-
973 cant mole of literature has been devoted to the develop-
974 ment of methods for their determination. Traditionally
975 these contaminants have been analyzed by gas chromato-
976 graphy after derivatization [185]. As for orthophosphate,
977 derivatization is necessary because such compounds are
978 acidic with low pK_a at least for the first dissociation (di-
979 ethyl phosphoric acid $pK_a = 1.3$; methylphosphonic acid
980 $pK_{a1} = 2.3$ and $pK_{a2} = 7.76$) [265, 266] and in phys-
981 iological conditions they are deprotonated. In order to
982 convert such analytes in derivatives amenable to gas chro-
983 matography, several approaches have been proposed. The
984 most popular methods are based on alkylation and silyla-
985 tion. In 2003, Black and Muir [267] reviewed derivatiza-
986 tion methods employed for the analysis of warfare agents
987 by-products with attention to silylation, methylation and
988 pentafluorobenzylation. In 2016 Tsikas [43] reviewed re-
989 cent literature dedicated to the use of PFB-Br for the de-
990 termination of dialkyl phosphates in biological fluids. In
991 this paragraph, derivatization strategies proposed for con-
992 version of the anionic - PO_4^{3-} moiety into a thermally stable
993 nonpolar derivative are discussed and summarized in Ta-
994 ble 5.

995 4.3.1. P-OH silylation

996 Most of silyl chemistry applications for conversion of the
997 P-OH group are related to identification of warfare agents
998 degradation by-products in environmental samples [267].

Table 4: Derivatization chemistries for the conversion of nitrite and nitrate in volatile derivatives

Derivative	Reagents	Notes (Year)	Ref.
Aryl-N≡N ⁺ → hydrolysis or further reaction to triazole or Sudan-I	Aryl-NH ₂ /aqueous acid	Diazotization reaction of NO ₂ ⁻ which is fully converted into a diazonium ion. The Aryl-N≡N ⁺ intermediate can be hydrolyzed or further reacted. Aromatic vicinal diamines yields the corresponding triazole. Formation of Sudan-I dye has been proposed recently. Late studies on GC-MS reported detection limits in the low ppt (1980-2010)	[155–164, 184]
Aryl-NO ₂	Aryl-H/acid	Nitration of the aromatic ring (Ar) in acidic conditions: Ar-H + H ₂ SO ₄ + NO ₃ ⁻ → Ar-NO ₂ . NO ₂ ⁻ can interfere in this assay and need to be removed or converted to NO ₃ ⁻ . Applied to biological fluids and environmental samples (1974-2008)	[165, 167–172]
PFB-NO ₂ ⁻ and PFB-ONO ₂ ⁻	PFB-Br	Simultaneous determination of NO ₂ ⁻ and NO ₃ ⁻ . Direct alkylation in acetone media at 50 °C 60 min. Suitable for NO ₂ ⁻ and NO ₃ ⁻ speciation in biological fluids With NCI GC-MS (1984-2017)	[39, 47, 49, 54, 56, 173–179]
Et-ONO and Et-ONO ₂ ⁻	Et ₃ O ⁺ [BF ₄] ⁻	Simultaneous determination of NO ₂ ⁻ and NO ₃ ⁻ . Direct alkylation in water medium at RT following matrix separation by headspace sampling. Suitable for NO ₂ ⁻ and NO ₃ ⁻ speciation in seawater with NCI GC-MS and NO ₃ ⁻ determination in vegetable with EI GC-MS (2011-2017)	[72, 75, 180, 181]

999 For this purpose both TMS and TBDMS derivatives have
1000 been prepared [268], but the latter are more stable to-
1001 toward hydrolysis and a better choice for such applications
1002 [7]. Kataoka et al. [193] reported the determination of
1003 alkyl methylphosphonate (RMPA) and methylphospho-
1004 nate (MPA) in soil. For this purpose an aqueous soil ex-
1005 tract were first dried at 50 °C under vacuum and then
1006 derivatized with MTBSTFA in acetonitrile at 60 °C for
1007 one hour following GC-MS analysis. Single and double
1008 TBDMS derivatives were observed for RMPAs and MPA
1009 rFor soil analysis however, sensitivity issues related to ex-
1010 traction and derivatization have been reported [193]. In-
1011 terference of divalent cations such as Ca²⁺ and Mg²⁺ re-
1012duced silylation yield [193, 197]. This observation is con-
1013 sistent with the results reported on the silylation of inor-
1014 ganic phosphate [23, 261] where complete derivatization
1015 was attained only with ammonium phosphates. In this
1016 regard, phosphates and phosphonates can combine with
1017 metal cations to give insoluble complex which are inert
1018 toward silylation, resulting in negative interference that
1019 can span from 10% to 98% [193]. For this reason, sam-
1020 ple pretreatment with strong anion exchange (SAX) col-
1021 umn was beneficial. Naomi et al. [194] further improved
1022 this approach by eluting a sample sodium hydroxide aque-
1023 ous extract in a SAX column with the presence of a high
1024 concentration of ammonia in methanol. The use of am-
1025 monia support conversion of phosphonates in the correspond-
1026 ing ammonium salts increasing the derivatization yield to
1027 the 90% level for both MPA and RMPA. Richardson and
1028 Caruso employed TBDMS derivatives for the determina-
1029 tion of alkylphosphonates in soil and water by GC-ICPMS
1030 with detection limits better than 5 pg absolute and lin-

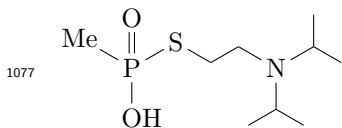
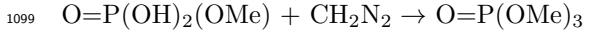

ear response in the 0.2 to 20 ng range [196]. In this case
1031 the derivatization was achieved with MTBSTFA with 1%
1032 of TBDMSCl in a 1:2 mixture of acetonitrile:reagent at
1033 80 °C for 45 minutes. The TBDMSCl acts as activator
1034 of the MTBSTFA increasing both reaction rate and ex-
1035 tent [7]. Gravett et al. [198] further improved this ap-
1036 proach by adding pyridine as proton scavenger. MTB-
1037 STFA has been also employed for in-situ derivatization of
1038 alkylphosphonates on SPME [192], on diatomaceous sor-
1039 bents [199], and with the hollow fiber-protected liquid-
1040 phase microextraction technique [195] with detection lim-
1041 its in the sub part-per-billion range. The silylation of
1042 phosphonic acids has also been achieved by trimethylsi-
1043 lylation. Dubey et al. [185] used the BSTFA to re-
1044 act alkylphosphonates (R = methyl, ethyl, *n*-propyl and
1045 isopropyl) and corresponding alkylthiophosphonates into
1046 the bis(trimethylsilyl) esters. The derivatization was per-
1047 formed in acetonitrile medium (50 μL) by reaction with 200
1048 μL of BSTFA at 70 °C for 1 hour. This approach has been
1049 used in other studies [187, 191, 269]. Dubey et al. [185] dis-
1050 cussed resulting EI mass spectra, concluding that double
1051 TMS alkylphosphonate derivatives exhibited a main signal
1052 at [M-15]⁺, whereas the alkylthiophosphonates at [M-R]⁺.
1053 TMS approach was also implemented for the determina-
1054 tion of nerve agent degradation products in human plasma
1055 with detection limits better than 22 ng/mL [186]. Terzic et
1056 al. [189, 268] employed the BSTFA for the in-situ derivati-
1057 zation of several compounds related to chemical warfare
1058 agents followed by thermal desorption GC-MS; the pro-
1059 cedure entailed the preparation of tubes packed with Tenax
1060 TA 60/80 mesh that were used to adsorb the target ana-
1061 lytes which were then derivatized with 3 μL BSTFA at 50

Table 5: Derivatization chemistries for the conversion of phosphates/phosphonates in volatile derivatives

Derivative	Reagents	Notes (Year)	Ref.
PO-TMS	BSTFA	Derivatives sensitive to moisture. Analyte multiple silylation are possible. TMCS is used as catalyst with pyridine as proton scavenger. Applications includes qualitative screening of environmental samples for chemical warfare agents markers (2005-2015)	[185–191]
PO-TBDMS	MTBSTFA	Similar chemistry and application reported for BSTFA, with better stability toward hydrolysis. Interference of Ca^{2+} and Mg^{2+} is limited by SAX elution with NH_3 . Used in conjunction with SPME with detection limits in the part-per-billion range (1999-2014)	[192–199]
PO-Me	Diazomethane	Highly toxic and explosive. Used for analysis of dialkylphosphates in urine with detection limit of 4-20 $\mu\text{g}/\text{L}$. Interference of orthophosphate and poor chromatography (1964-2012)	[200–206]
	MeI	Used for quantitation of dialkyl phosphates in urine after exposure to organophosphorus pesticides (2002)	[207]
	Me_3PhN^+	On-column derivatization. Limited column life due to caustic effects of the reagent but safer than previous strategies. Detection limit in the part-per-billion for quantitation of dialkyl phosphate in urine (1978-2007)	[208–212]
PO-R	Diazoalkane	Ethyl, pentyl, benzyl derivatives showed better chromatography than methyl ones. Recently 3-pyridyldiazomethane was employed for structural determination of alkyl methylphosphonates by EI GC-MS (1967-2013)	[213–220]
	Tolyltriazenes	Less toxic then diazoalkanes can perform multiple benzylations of monoalkyl phosphates in 15 min (1979)	[221, 222]
	PeBr , PrBr	Derivatization at 100 °C in less then 2 h with no interference from Ca^{2+} and Mg^{2+} . Alkylphosphonates screening in water with 0.1-0.75 $\mu\text{g}/\text{mL}$ detection limits (2006-2017).	[223, 224]
PO-(CH_2) ₃ Cl	$\text{I}-(\text{CH}_2)_3\text{Cl}$	Single alkylation of dialkyl phosphates in urine with part-per-trillion detection limit (2002-2013)	[225–228]
PO-PFB	PFB-Br	Single alkylation of dialkyl phosphates in urine and alkyl alkylphosphonates in environmental samples with sub part-per-billion detection limit (1981-2015).	[229–254]
PO-Bn(CF_3)	$\text{N}=\text{N}-\text{Bn}(\text{CF}_3)$	Rapid derivatization (5 min at RT) of 25 μL aqueous samples by dilution in ACN (475 μL) with 4 μL reagent. Quantitation of alkylphosphonates (mono and diprotic) in urine and water with sub part-per-billion detection limits (2010-2013)	[255, 256]
P-F	HF	Dehydroxy-fluorination of dialkylphosphates for the conversion of P-OH into P-F (1980)	[257]

¹⁰⁶³ °C for 5 minutes. Due to the limited contact time with the
¹⁰⁶⁴ reagent, compounds with two silylable moieties lead to the
¹⁰⁶⁵ formation of both mono- and di- TMS derivatives. The use
¹⁰⁶⁶ of BSTFA has also been proposed for the determination of
¹⁰⁶⁷ dialkyl phosphate ester in petroleum samples. Rossé and
¹⁰⁶⁸ Harynuk [188] proposed trimethylsilylation of dibutyl and
¹⁰⁶⁹ bis(2- ethylhexyl) phosphate for their determination in oil.
¹⁰⁷⁰ For this purpose a 100 μL of] BSTFA:pyridine:TMCS mix-

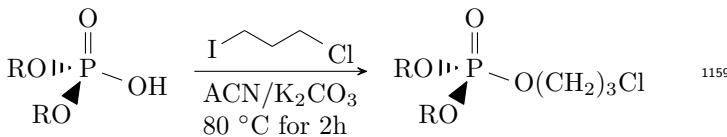
¹⁰⁷¹ ture (10:5:2) was employed to react 500 μL of hexane ex-
¹⁰⁷² tract at room temperature for 30 minutes with detecti-FID
¹⁰⁷³ system. An interesting application of TMS chemistry was
¹⁰⁷⁴ reported by Subramaniam et al. [190] for the GC-MS iden-
¹⁰⁷⁵ tification of S-2-(N,N-diisopropylaminoethyl) methylphos-
¹⁰⁷⁶ phonothiolate known as EA-2192:


1078 This molecule exhibits a high toxicity and is associated
1079 to the hydrolysis of VX nerve agent. Until 2012 it was
1080 believed that the silylation of this phosphonate was not
1081 feasible due to its zwitterionic character [267]. However,
1082 Subramaniam et al. [190] proved that the issues encoun-
1083 tered for the silylation of EA-2192 were due to the presence
1084 of salt that can interfere with the derivatization chemistry.
1085 This results is consistent with the founding of Kataoka et
1086 al. which report strong interference of Ca^{2+} and Mg^{2+}
1087 during derivatization of alkyl phosphonate and justifies
1088 sample preparation strategies aimed to remove the ionic
1089 component from the sample.

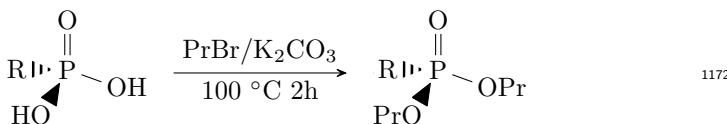
1090 *4.3.2. P-OH methylation*

1091 Methylation of the P-OH group has been proposed in early
1092 days with with diazomethane derivatization [200–206]:

1094 CH_2N_2 however is explosive and highly toxic; furthermore
1095 this approach suffer orthophosphate interference which
1096 produces the same derivative as the mono and dimethyl
1097 phosphate:



1101 For these reasons, other milder methylating agents has
1102 been used. Lin et al. [207] isolated four alkylphosphates
1103 on a SAX disk and performed the methylation directly on
1104 the disc with methyl iodide in acetonitrile at 80 °C for
1105 one hour. On-column methylation with trimethylphenyl-
1106 ammonium hydroxide has also been proposed [208–212].
1107 However, methyl derivatives of phosphoric and phospho-
1108 nic acids are still polar compounds with limited chro-
1109 matographic properties [267] and are prone to hydrolysis.
1110 Therefore, alkylation with higher alkyl chain is more pop-
1111 ular.


1112 *4.3.3. P-OH alkylation*

1113 The use of alkylation reaction for the derivatization of
1114 phosphates and phosphonates has the advantage to pro-
1115 vide more stable derivatives with better GC figure-of-
1116 merits as compared to methylation. For this purpose ethyl-
1117 alation and amylation reactions based on the use of dia-
1118 zoalkanes are reported [213–218]. For example the amyl
1119 derivatives of dialkyl phosphates were prepared by Shafik
1120 et al. in 1973 [215] with diazopentane. The alkylating
1121 reagent was prepared in-house starting from the *N*-amyl-
1122 *N*-nitro-*N*-nitrosoguanidine and used for reacting dialkyl
1123 phosphates previously acid-extracted in organic solvent.
1124 Due to health and safety concerns associated with dia-
1125 zoalkanes, Daughton et al. [221] and Takade et al. [222]

1126 used a non-aqueous reaction with triazene derivatizing
1127 agents for the benzylolation (3-benzyl-1-*p*-tolyltriazene) and
1128 nitrobenzylolation (1-(4-nitrobenzyl)-3-(4-tolyl)triazene) of
1129 mono- and di- alkyl phosphate at the ppb level. The reac-
1130 tion was accomplished in acetone for 20 min at 60–70 °C.
1131 Both reagents are considerably safer than diazoalkane. In
1132 fact they are solid, non-volatile, non-explosive, do not need
1133 to be prepared in-house, and are stable in solution [222].
1134 However, they are potential carcinogens [221]. An alter-
1135 native benzylolation approach was proposed by Kupfermann
1136 et al. [219] using diazotoluene as derivatizing agent. De-
1137 spite the use of this reagent did not give evident procedu-
1138 ral advantages respect to the triazenes, the authors proved
1139 that benzyl derivatives of dialkyl phosphates produced a
1140 significant molecular ion which give an advantage for EI
1141 mass spectrometric detection. More recently another dia-
1142 zo compound, the 3-pyridyldiazomethane, was utilized
1143 for the derivatization of alkyl methylphonic acids related
1144 to the Chemical Weapon Convention. Pyridyl derivatives
1145 have the advantage to provide unique EI fragmentations
1146 making possible the GC-MS identification of structural re-
1147 lated compounds [220]. Another alkylation approach em-
1148 ployed to derivatized phosphate ester was based on the
1149 use of 1-chloro-3-iodopropane. Bravo et al. [225, 226] pro-
1150 posed a GC-MS/MS method for the determination of six
1151 dialkylphosphate at the part-per-trillion level in urine sam-
1152 ples (MRM in positive CI). The samples were spike with
1153 isotopically enriched internal standard and concentrated
1154 under evaporation. The residue was then suspended in
1155 acetonitrile and reacted with 1-chloro-3-iodopropane at 80
1156 °C for two hours. The reaction was favored by adding
1157 potassium carbonate grains directly in the non-aqueous
1158 reaction medium:

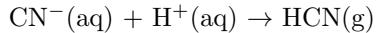


1160 The presence of chlorine on the molecular structure of the
1161 derivatives was used to prove the selectivity of the method
1162 by monitoring the ^{35}Cl to ^{37}Cl ratio. This interesting
1163 derivatization approach has been employed by De Alwis
1164 et al. in 2006 [227] with an SPE method for isolation of
1165 dialkyl phosphates from urine samples and by Wang et al.
1166 in 2013 [228] on the same matrix for monitoring human
1167 exposure to organophosphate pesticides. In a similar fash-
1168 ion, other haloalkanes were proposed for the derivatization
1169 of the P-OH moiety. Pardasani et al. employed the reac-
1170 tivity of both pentyl bromide [223] and propyl bromide
1171 [224]:

1173 for the derivatization of di-protic phosphonic acid con-
1174 nected with the Chemical Weapon Convention. With the

use of the hollow fiber liquid phase microextraction detection limits of 0.5-0.75 $\mu\text{g}/\text{mL}$ were obtained. A very popular derivatization scheme applied for both phosphates and phosphonates is based on the alkylation with PFB-Br. This strategy was recently reviewed [43] and 26 research papers over the 1982-2015 time frame are summarized in Table 5. This reagent has been applied for determination of dialkylphosphates, dialkylthiophosphates, dialkyldithiophosphates, alkyl alkylphosphonates in biological fluids and environmental samples [229-254]. As a general reaction scheme, the direct alkylation of the analytical substrate with PFB-Br has been proposed in acetone or acetonitrile with a base like K_2CO_3 at 40-90 $^{\circ}\text{C}$ for 0.5-16 hours following dissolution in hexane after evaporation of the reaction media to dryness [230, 247]. Most of the applications of PFB chemistry encompass phosphates/phosphonates with only one protic group. Due to the steric hindrance of the PFB group it is expected that molecule with multiple P-OH groups would react incompletely with PFB-Br [43]. The major advantage of PFB derivatives is their disposition to undergo chemical ionization in negative mode (NCI) which brings the detection limits below the part-per-billion range [241]. This great advantage is counterbalanced by the timely preparation of PFB esters which make this approach unsuitable for fast screening. For this reason, Subramaniam et al. [255, 256] proposed a novel fluorinated phenyldiazomethane for the conversion of the P-OH moiety in the following derivative:

1204 This approach maintains the advantage of NCI high-
1205 sensitivity, but overcome the timely procedure for the
1206 preparation of PFB esters [255]. The direct derivatiza-
1207 tion of an aqueous sample (25 μL) was attained in 475 μL
1208 acetonitrile with 4 μL of a fluorinated phenyldiazomethane
1209 prepared in house within 5 min at room temperature in a
1210 ultrasonic bath. Resulting solution could be analyzed di-
1211 rectly by GC-MS and the method was implemented for the
1212 screening of nerve agents degradation by-products in both
1213 biological and environmental samples.

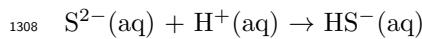

1214 4.4. *Thiocyanate, cyanide and sulfide*

1215 Cyanide (CN^-) is a potent toxic agent able to inhib-
1216 iting cell respiration by binding Fe(III) of cytochrome oxi-
1217 dase. Cyanide is widely used in industry and regulation
1218 have been established in several countries to ensure min-
1219 imum standard of quality [270]. Thiocyanate (SCN^-) is
1220 its major metabolites in mammals, and it is regarded as
1221 a long-term biomarker for CN^- exposure and for assess-
1222 ment of the internal smoking dose [271]. Most of analyti-
1223 cal applications are focused on simultaneous determination
1224 of CN^- and SCN^- in biological samples. Normal blood

1225 cyanide level averages from 0.015 to 0.030 $\mu\text{g}/\text{mL}$ in non-
1226 smokers, and from 0.03 to 0.08 $\mu\text{g}/\text{mL}$ in smokers where
1227 it becomes toxic at concentration above 0.5 $\mu\text{g}/\text{mL}$. Nor-
1228 mal plasma thiocyanate levels ranges from 1 to 4 $\mu\text{g}/\text{mL}$
1229 (3 to 12 $\mu\text{g}/\text{mL}$ in smokers) [272]. Sulfide ion (S^{2-}) is in
1230 acid equilibrium with H_2S which is an asphyxiant, irritant
1231 and neurotoxic gas. Hydrogen sulfide poisoning is a com-
1232 mon occupational hazard, with an incidence that is second
1233 only to carbon monoxide poisoning and a mortality rate
1234 that is the first among occupational poisoning incidents
1235 [273]. Analysis of blood sulfides is diagnostic of acute hy-
1236 drogen sulphide poisoning. Because of the extreme H_2S
1237 toxicity along with its relevant biological role [274], very
1238 low detection limits are required for its quantitation. Tra-
1239 ditional methods for CN^- [275], SCN^- [276] and S^{2-} [277]
1240 include spectrophotometry upon conversion of the analytes
1241 in colored derivatives [278-280]. These approaches how-
1242 ever, may lack specificity when complex matrices are ana-
1243 lyzed. This issue is also common to electrochemical meth-
1244 ods. For example, amperometric methods are affected by
1245 the presence of large amount of chloride and organic com-
1246 pounds, like fatty acids, sugars, aldehydes and polysul-
1247 phides. Moreover, pre-concentration is usually required
1248 to obtain limits of detection in the $\mu\text{g}/\text{L}$ range. Sensi-
1249 tive voltammetric methods are reported for S^{2-} , but issue
1250 with the identification of the analytical peak are known for
1251 complex matrices like seawater [281]. Liquid chromatog-
1252 raphy, ion chromatography and electrophoresis have been
1253 widely employed for separation of inorganic anions, but
1254 typically such methods are interfaced with UV (210 nm)
1255 and conductivity detectors which suffer limited specificity
1256 and detection power [282-284]. Methods based on gas
1257 chromatography that overcome issues of the classical ones
1258 have been proposed for the determination of CN^- , SCN^-
1259 and S^{2-} . In the following paragraphs we will discuss major
1260 derivatization chemistries that have been applied for the
1261 conversion of these anions into volatile compounds suit-
1262 able for gas chromatography. Derivatization chemistries
1263 recently applied for GC determination of these analytes
1264 are also summarized in Table 6.

1265 4.4.1. *Generation of HCN by acidification*

1266 Simple aqueous acidification with sulfuric or phosphoric
1267 acid has been proposed for the conversion of CN^- in
1268 gaseous HCN:

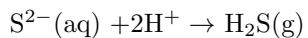


1270 This approach has been used for over 40 years for cyanide
1271 determination by headspace gas chromatography using ni-
1272 trogenphosphorus specific detector (NPD) or mass spec-
1273 tomety [285-294]. Variations on this technique include
1274 fully automated procedures [293], cryogenic oven trapping
1275 [288, 295] and sampling of the headspace via SPME fibers
1276 [292, 296-298]. In the cited studies detection limit between
1277 2 and 50 $\mu\text{g}/\text{L}$ are reported, and acetonitrile or propioni-
1278 trile were proposed as internal standards with the NPD

1279 detector. Acetonitrile however, is widely used in most
1280 laboratories as an extraction solvent or mobile phase for
1281 liquid chromatography, therefore it is not an ideal choice
1282 [289, 297]. Among recent studies the implementation of
1283 automated headspace GC-MS methods has allowed high-
1284 precision isotope dilution quantitation of cyanide in blood
1285 with detection limits of 3-8 $\mu\text{g/L}$ [295, 299]. Furthermore,
1286 this approach was proven to generate data statistically
1287 equivalent to the a classic spectrophotometric
1288 method [300]. Although acid generation of HCN is simple
1289 to implement, such an approach has some limitations.
1290 When biological samples are analyzed, artifactual forma-
1291 tion of CN^- from SCN^- in the presence of oxyhemoglobin
1292 in acidic medium has been observed [301]. Furthermore,
1293 HCN is a low-molecular-weight molecule which is detected
1294 at m/z of 27 Da; this region of the MS spectrum is domi-
1295 nated by air gases like N_2 (m/z of 28 Da) which can cause
1296 interference. Another issue working with gaseous HCN is
1297 related to the injection mode. In this regard, some authors
1298 reported that HCN could be measured without cryogenic
1299 cooling [294, 299], but others could not obtain reliable re-
1300 sults without cryogenic cooling [295, 302].

1301 4.4.2. Gas chromatography of H_2S

1302 In aqueous samples sulfide ion has not been detected at
1303 substantial concentrations even in alkaline medium: Meyer
1304 et al. [303] reported that starting from 8.9 N NaOH with
1305 0.6 M S^{2-} and 0.1 M NaClO_4 a 0.5 ± 0.1 M HS^- solution
1306 was obtained, proving that even in such extreme alkaline
1307 conditions the major sulfide portion was bisulfide:



1309 This observation with reported values of H_2S second dis-
1310 sociation constant ($pK_{\text{a}2} = 17 \pm 1$ as measured by Raman
1311 spectroscopy [303] or $pK_{\text{a}2} = 17.6 \pm 0.3$ as measured with
1312 a pH-electrode [304]). Bisulfide ion itself is in equilibrium
1313 with H_2S :

1315 The first dissociation constant of H_2S ($pK_{\text{a}1} = 7.06 \pm 0.02$
1316 [305]) suggests that in physiological condition (pH 7.4)
1317 H_2S , HS^- and S^{2-} are present at the 30:70:0.000002 ratio
1318 [274]. Despite H_2S is not the most abundant species,
1319 several study are focused on its determination which can
1320 be attained directly by gas chromatography. At very low
1321 concentration H_2S is of concern for its unpleasant odor
1322 and it has been analyzed by GC with flame photometric
1323 detector in gaseous industrial effluents (with detection
1324 limit in the $\mu\text{g/m}^3$ range) [306], in hyper-eutrophic fresh-
1325 water sample [307], and in wine samples (with a detection
1326 limit of 0.50 $\mu\text{g/L}$) [308] as part of its aroma [309]. In all
1327 methods a PDME-Carboxen fiber was employed for sam-
1328 pling from the vial headspace. Other examples of direct
1329 determination of H_2S by headspace gas chromatography
1330 include pharmaceutical formulations [310], seawater [311],
1331 biological [312] and atmospheric samples [313]. In analogy

1332 with CN^- analysis (Paragraph 4.4.1), the determination
1333 of total dissolved sulfides could be attained by gas chro-
1334 matography upon acidification:

1336 Radford-Knoery et al. [314] reported a method for total
1337 sulfides where 300 mL aliquots of water sample were
1338 treated with 12 mL of H_3PO_4 1.5 M following strip-
1339 ping/cryogenic trapping of H_2S . With a flame photometric
1340 detector a an absolute detection limit of 0.06 pmol was
1341 reported. On the 300 mL sample volume as low as 0.2
1342 pmol/L of total sulfides could be measured. In this study
1343 total sulfides was defined as the summation of free sulfide
1344 (H_2S , HS^- , and S^{2-}) and dissolved metal sulfide com-
1345 plexes.

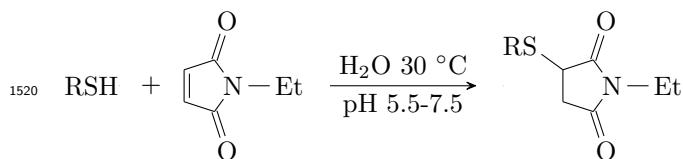
1346 4.4.3. Generation of CNCl by chloramine-T

1347 To overcome disadvantages associated to HCN detection,
1348 other derivatization approach have been proposed to con-
1349 vert CN^- into a higher molecular weight derivative. For
1350 example, Valentour et al. [315] reported first the use
1351 of chloramine-T (sodium *p*-toluene sulfonchloramide) to
1352 convert CN^- into cyanogen chloride (CNCl), a volatile
1353 gas readily detectable by ECD. This derivatization has
1354 been applied for the determination of cyanide in cigarette
1355 smoke [316] with a linear response from 25.0 ng/mL to
1356 15.0 $\mu\text{g/mL}$ (RSD = 0.07-3.30%) on a μECD detector.
1357 Cyanide was also measured in blood using both GC-MS
1358 detection in EI mode (working range 0.13-2.6 $\mu\text{g/mL}$ [317])
1359 and ECD (DL 10 $\mu\text{g/L}$ [318]). The chloramine-T derivati-
1360 zation requires first separation of CN^- from the matrix
1361 which is commonly attained by acid conversion of the an-
1362 alyte into HCN. For this purpose, the use of a micro-
1363 diffusion cell was proposed for the collection of HCN in
1364 diluted NaOH following extractive derivatization with a
1365 solution of chloramine-T in *n*-heptane or hexane [315-
1366 317]. Other authors avoided the lengthy microdiffusion
1367 step by injecting HCN(g) directly in a pre-column packed
1368 with chloramine-T [319]. Notably, Odoul et al. carried
1369 out HCN formation and chlorination in a single step and
1370 in the same reaction medium with a double vial system,
1371 the outer containing sample solution, the inner the derivati-
1372 zing agent [320]. In the most recent study using this
1373 derivatization, the authors converted CN^- into HCN with
1374 nitric acid into a headspace vial containing a chloramine-T
1375 stick filter paper [318]. In the cited studies, chloramine-T
1376 concentration was 0.25-1.5%, and reaction was attained at
1377 20-65 °C within 90 min.

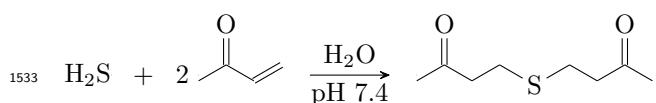
1378 4.4.4. CN^- , SCN^- and S^{2-} by alkylation

1379 Alkylation is a common approach for derivatization of
1380 CN^- , SCN^- and S^{2-} before gas chromatography. Methy-
1381 lation of these analytes could be attained with dimethyl
1382 sulfate, methyl *p*-toluenesulfonate or trimethyl phosphate
1383 (Table 1) and in paragraph 3.2 is reported the proof of
1384 concept for these classical reagents. A recent application

of $(\text{MeO})_2\text{S}=\text{O}$ chemistry was proposed for the determination of salivary thiocyanate by GC-FID with a detection limit of 0.2 ng/mL and a working range up to 80 ng/mL. The sample was pre-cleaned on a SPE column following derivatization with 100 μL dimethyl sulphate at 60 °C for 30 min in an ultrasonic bath. The methyl-derivative was extracted in CH_2Cl_2 and injected in the GC-FID [321]. Tanaka et al. compared methylation and ethylation with $(\text{MeO})_2\text{S}=\text{O}$ and $(\text{EtO})_2\text{S}=\text{O}$ [32] founding the second reagent more efficient to alkylate S^{2-} . For common laboratory practice however, the use of such very toxic reagents poses concerns. SCN^- ethylation was also attained with ethyl iodide in an immiscible aqueous phase-organic phase system with commercial Kryptofix 222B polymer as immobilized phase-transfer catalyst, and resulting ethyl thiocyanate was detected by a flame thermionic detector with a detection limit of 0.01 $\mu\text{g}/\text{mL}$ [322]. Methyl iodide was employed for the alkylation of sulfide and polysulfides following their determination in drinking water by headspace SPME GC-MS with detection limits ranging from 50 to 240 ng/L [323]:



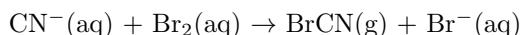
Me_2S however, is a compound that can be present endogenously in a water sample [314] which could result in an obvious positive interference for S^{2-} detection. On-column butylation of SCN^- ion paired with tributylsulfonium ion [30] was employed for plasma analysis. The ion pair was extracted into ethyl acetate and injected into a gas chromatograph, resulting in formation of volatile EtSCN . The method was suitable for quantitation of thiocyanate in 100 μL plasma samples from nonsmokers. Another alkylation strategy that we recently proposed for the determination of salivary SCN^- is based on aqueous ethylation with triethyloxonium tetrafluoroborate followed by headspace GC-MS [73]. The method was optimized for quantitation of saliva samples containing 1-400 $\mu\text{g}/\text{g}$ SCN^- with a standard uncertainty of 2% relative for saliva samples with 25 $\mu\text{g}/\text{g}$ SCN^- . The method was applied to discriminate between smokers and nonsmokers. A popular alkylation strategy for derivatization of CN^- , SCN^- and S^{2-} is based on PFB-Br. The first application of this reagent for anions dates back to 1981, when direct alkylation of S^{2-} allowed its quantitation in spring water by GC-ECD at the part-per-billion level [51]. An alkaline medium favors the double alkylation of S^{2-} to PFB_2S even if for NaOH concentrations above 0.06 M strong PFB-Br hydrolysis was observed. This method combined with extractive alkylation with tetradecyldimethylbenzylammonium chloride found forensic applications for the determination of S^{2-} (0.3 nmol/mL DL) [324] and polysulfides (5 nmol/mL DL) [325] in whole blood in cases of hydrogen sulfide poisoning. Later, Hyspler et al. [326] presented a method for determination of S^{2-} in whole blood with benzalkonium chloride as phase-transfer catalyst for PFB-Br extractive alkylation. Derivatization was completed in 4 hours under continuous shaking with a detection limit of 192 $\mu\text{g}/\text{L}$


on GC-MS. Such method was suitable for quantitation of sulfide in blood of healthy volunteers (35-80 $\mu\text{mol}/\text{L}$) with a reproducibility better than 3%. Many inorganic anions and organic alcohols were checked as internal standards, and naphthalene was chosen to compensate for instrumental fluctuations. Alkylation of CN^- and SCN^- by PFB-Br was also reported in early eighties [52]. The derivatives formed after direct alkylation in a acetone/ NaOH medium were directly analyzed by GC-FID or ECD, and identified by GC-MS. The effects of several reaction parameters (e.g., added base or acid, amount of PFB-Br, reaction temperature, solvent and reaction time) were optimized for each anion. In a second study, the interference of SCN^- with CN^- following PFB alkylation was reported [53]. While analyzing SCN^- a peak also appears at the retention time of CN^- derivative showing possible conversion of SCN^- to CN^- during the derivatization step. A counterintuitive reactivity of SCN^- with PFB-Br was also reported by Wu et al. [52] who identified PFB_2S (S^{2-} natural derivative) as the main reaction product. This chemistry artifacts were observed for direct PFB alkylation in acetone or ethanol medium suggesting that care should be taken when PFB chemistry is applied for speciation of CN^- and SCN^- . Paul and Smith [327] addressed this issue using the extractive alkylation in 2,5-dibromotoluene with tetrabutylammonium sulfate as phase-transfer catalyst. In these conditions, simultaneous determination of CN^- and SCN^- in saliva could be attained without formation of side product or SCN^- hydrolysis. Derivatization yield was 55-65% and with a GC-MS system in EI mode a linear response was collected in the 1-100 $\mu\text{mol}/\text{L}$ for CN^- and 5-200 $\mu\text{mol}/\text{L}$ for SCN^- . A similar extractive alkylation approach was also applied for CN^- and SCN^- speciation in blood [57]. Derivatization of CN^- was successful after protein precipitating, whereas SCN^- could be analyzed only on whole blood. Therefore, two different procedures were required for analysis of CN^- and SCN^- . Identification was attained by GC-MS and quantitation by GC-ECD with detection limits 0.26 $\mu\text{g}/\text{g}$ CN^- and 1.7 $\mu\text{g}/\text{g}$ SCN^- , while the gross recovery of both compounds was 80%. More recently, Bhandari et al. [328] employed extractive alkylation into ethyl acetate (tetrabutylammonium sulphate as phase-transfer catalyst) for the simultaneous determination of CN^- and SCN^- in plasma. With chemical positive ionization GC-MS, the authors reported detection limits of 1 μM and 50 nM for cyanide and thiocyanate with a linear dynamic range from 10 μM to 20 mM for CN^- and from 500 nM to 200 M for SCN^- ($\text{RSD} \leq 9\%$). Gross recovery of both anions from swine plasma was 90%. Extractive PFB alkylation was also proposed for the GC-MS determination of SCN^- in urine, saliva, and hair as a marker for smoke uptake (1.015 $\mu\text{g}/\text{mL}$ quantitation limits) [329] and in plasma proteins to confirm cyanide exposure [330]. In this last study SCN^- bound to protein was extracted from swine plasma within 1 hour at room temperature in aqueous buffer at pH 10 and the derivatization strategy was the one proposed by Kage et al. in 1996 [57]. This study re-

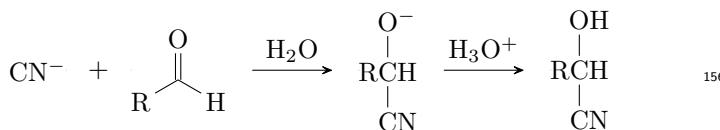
1498 lied on the reactivity of free CN^- with disulphide bonds in
 1499 proteins to form protein-bound thiocyanate. Because pro-
 1500 teins have long half-lives, analysis of thiocyanate-protein
 1501 adducts has the potential to be a long-term marker for
 1502 CN^- exposure. In our recent study, we investigated the
 1503 reactivity of PFB-Br with CN^- [42] and we found that
 1504 direct derivatization in alkaline medium leads to multiple
 1505 alkylation with formation of $\text{F}_5\text{Bn-CN}$, $(\text{F}_5\text{Bn})(\text{F}_5\text{Ph})\text{CH-}$
 1506 CN , and $(\text{F}_5\text{Bn})_2(\text{F}_5\text{Ph})\text{C-CN}$. When a 100 mL volume of
 1507 an aqueous CN^- standard in NaOH 0.1% was reacted with
 1508 700 mL of 1.3% PFB-Br in acetone, $(\text{F}_5\text{Bn})_2(\text{F}_5\text{Ph})\text{C-CN}$
 1509 was the most abundant derivative. Such highly-fluorinated
 1510 specie could be detected at 0.5 ng/g with negative chemi-
 1511 cal ionization GC-MS and the method was applied for the
 1512 determination of total cyanide in soil.

1513 *4.4.5. Sulfide derivatization with α,β -unsaturated ketones*
 1514 The reactivity of hydrogen sulfide with α,β -unsaturated
 1515 ketones [331] has been employed for sulfides determi-
 1516 nation via gas-chromatography. Salgado-Petinal et al.
 1517 [332] converted several alkanethiols and H_2S into volatile
 1518 compounds by aqueous reaction with *N*-ethyl-maleimide
 1519 (NEM) following immersion SPME GC-MS:

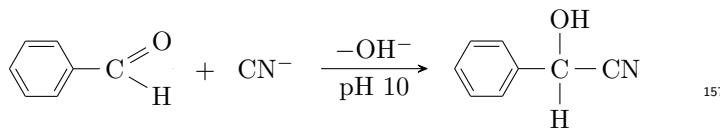
1521 This reaction is very specific for thiols and in case of H_2S
 1522 it can lead to the formation of NED-SH (single alkylation)
 1523 and NED₂S (double alkylation). For H_2S quantitation, the
 1524 first derivative was preferred being the second not repro-
 1525ducible. Under optimized conditions NED-SH was quanti-
 1526 fied at 6.9 ng/L. The authors also reported that H_2S could
 1527 also react with alkenethiols to form R-S-S-NED resulting
 1528 in potential analyte losses [332]. A similar approach was
 1529 recently proposed using 3-buten-2-one [333]. Also in this
 1530 case the reaction with H_2S could lead to multiple deriva-
 1531 tives however, under strong excess of reagent and at pH
 1532 7.4 the reaction could be shifted to the double derivative:

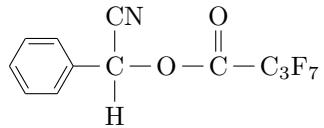


1534 Stable isotope dilution was implemented for quantitation.
 1535 The authors prepared a Na^{34}S internal standard by re-
 1536 acting elemental $^{34}\text{S}_8$ with metallic sodium following a
 1537 known procedure [334]. Detection was attained by two-
 1538 dimensional heart-cut GC-MS using positive chemical ion-
 1539 ization.


1540 *4.4.6. Other derivatization for CN^-*

1541 The interest behind CN^- quantitation has fuelled the de-
 1542 velopment of derivatization methods other than conversion
 1543 to HCN or alkylation. For example, Funazo et al. [335]


1544 described formation of benzonitrile from CN^- in presence
 1545 of Cu^{2+} ion, aniline and sodium nitrile. 1 mL of aque-
 1546 ous sample was treated with 0.25 mL NaNO_2 70 mM and
 1547 0.25 mL CuSO_4 100 mM following addition of 1 mL of ani-
 1548 line 300 mM in chloroform and the reaction mixutre was
 1549 shaken for 30 min at 55 °C. Detection limit of 3 $\mu\text{g/mL}$
 1550 with GC-FID were obtained, but a non-linear calibration
 1551 plot on the low concentration was observed. Reaction of
 1552 CN^- with Br_2 was employed for CN^- determination by
 1553 GC-ECD [336]:


1555 Resulting BrCN was sampled in the headspace. SCN^- is
 1556 an interference to the assay since it is converted to the
 1557 same BrCN derivative. Therefore this method returns the
 1558 summation of CN^- and SCN^- . Another proposed ap-
 1559 proach for CN^- derivatization is based on reaction with
 1560 formaldehyde or acetaldehyde to form cyanohydrin [337]:

1562 Quantitative derivatization was attained without SCN^-
 1563 interference. Concentrations of CN^- ranging from 0.05
 1564 to 50 ppm were determined with a nitrogen-phosphorus
 1565 detector on water samples. The method was robust to-
 1566 ward the presence of high amounts of proteins and metal
 1567 cations whose decomposition was attained by UV irradia-
 1568 tion of the sample solution, leaving CN^- free to react
 1569 with the aldehyde. Among more recent work, a double
 1570 derivatization approach was proposed for the determina-
 1571 tion of CN^- in plasma and urine [338]. The sample was
 1572 buffered with sodium borate solution (pH 10) and treated
 1573 with benzaldehyde:

1575 Such reaction was completed within 30 s at room tem-
 1576 perature. The mixture was then eluted on a diatomaceous
 1577 earth column and after 1 min the analyte was eluted with
 1578 5 mL *n*-hexane containing 0.4% heptafluorobutyryl chlo-
 1579 ride (HFB-Cl) for in situ derivatization to:

1581 No protein precipitation was required. The method al-
 1582 lows a complete analysis of biological samples in 25 min,
 1583 with detection limits of 10 and 40 ng/mL CN^- for urine
 1584 and blood on a GC-MS system in SIM mode. Despite
 1585 the use of an isotopically enriched CN^- could have been

1586 use for quantitation, the authors chose non-specific 1,3,5-
1587 tribromobenzene as internal standard. Another derivati-
1588 zation scheme was recently proposed by Kang et al.
1589 [339]. Cyanide derivatization in surface water was at-
1590 tained using 2-(dimethylamino)ethanethiol, to make a 2-
1591 (dimethylamino)ethyl thiocyanate. A 10 mL aliquot of wa-
1592 ter sample was pH adjusted to 6 with an acetate buffer and
1593 reacted for 20 min at 60 °C 20 min. The derivative was ex-
1594 tracted in ethyl acetate and analyzed by GC-MS/MS with
1595 a limit of detection of 20 ng/L.

1596 4.5. Arsenic oxyanions

1597 Inorganic arsenic is commonly encountered in two sta-
1598 ble redox states, As(III) and As(V), which may inter-
1599 convert under certain conditions of pH and redox poten-
1600 tial. At natural pH, arsenite is present in solution
1601 predominantly as H_3AsO_3 ($\text{p}K_{\text{a}1} = 9.2$ and $\text{p}K_{\text{a}2} =$
1602 12.7) whereas arsenate occurs mainly as anionic H_2AsO_4^-
1603 and HAsO_4^{2-} ($\text{p}K_{\text{a}1} = 2.3$, $\text{p}K_{\text{a}3} = 6.8$, and $\text{p}K_{\text{a}3} =$
1604 11.6). In living organisms inorganic As is usually me-
1605 tabolized to organoarsenic molecules like monomethylar-
1606 sonic acid (MMA, MeAsO(OH)_2) and dimethylarsinic acid
1607 (DMA, $\text{Me}_2\text{AsO(OH)}$). Some As species, such as arsine
1608 (AsH_3), are highly toxic whereas others, like arsenobetaine
1609 (AsB , $\text{Me}_3\text{As}^+\text{CH}_2\text{CHOO}^-$), arsenocholine (AsC ,
1610 $\text{Me}_3\text{As}^+\text{CH}_2\text{CH}_2\text{OH}$), arseno-sugars (AsS), or arsenolipids
1611 (AsL), are organic compounds which remain unchanged
1612 in the body. The different toxicity of As containing com-
1613 pounds has fulled the interest for speciation of the element
1614 in several matrices such as food, drinking water, air and
1615 soil and several strategies have been employed [130, 340–
1616 347].

1617 4.5.1. Hydride generation with $[\text{BH}_4]^-$

1618 4.5.2. As-OH derivatization with thioglycolic acid alkyl es- 1619 ters

1620 4.5.3. Other approach of As-OH derivatization

1621 4.6. Selenite

1622 4.6.1. Alkylation with aqueous NaBR_4 ($R = \text{Et, Pr, Ph}$)

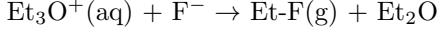
1623 4.6.2. Derivatization with aromatic o-diamines

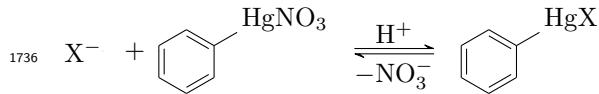
1624 4.7. Borate

1625 Zeng et al. [348] proposed a derivatization method for
1626 the conversion of borate in a volatile derivative. A 20
1627 mL aliquot of drinking water sample was dried at 55 °C
1628 under a stream of nitrogen and reacted with 2.4 mg of
1629 triethanolamine in 500 μL of acetonitrile at 50 °C for 1
1630 hour. Formation of condensation product triethanolamine
1631 borate $[\text{B}(-\text{OCH}_2\text{CH}_2)_3\text{N}]$ was observed. The reaction
1632 mixture was diluted to 2.0 mL with acetonitrile and an-
1633 alyzed by GC-MS. In SIM mode a linear response was
1634 obtained from 0.01 $\mu\text{g/mL}$ to 10.0 $\mu\text{g/mL}$. Like many alkyl
1635 borates, triethanolamine has a strong disposition to hy-
1636 drolysis [349], therefore this derivatization requires non-
1637 aqueous medium.

1638 4.8. Fluoride and other halides

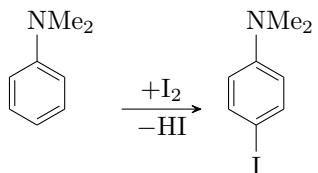
1639 Fluoride is an inorganic anions which has a role in human
1640 health and several countries perform drinking water fluo-
1641 ridation at the 0.7-1 mg/L level in order to prevent tooth
1642 decays. However adverse health effects are expected when
1643 fluoride levels rise above 1.5 mg/L [350, 351]. The very
1644 narrow concentration window where fluoride is beneficial
1645 for humans has justified development of several analyti-
1646 cal methods for its monitoring. In 2016 Dhillon et al.
1647 [351] presented a review on fluoride methods highlighting
1648 that ion-selective electrode is the most employed technique
1649 and future trends include development of sensors. How-
1650 ever, methods based on electrochemistry can suffer ma-
1651 trix effects and alternative more specific approaches - like
1652 gas chromatography - can have a role in their validation.
1653 The first GC methods for fluoride dates back to the six-
1654 ties when silylation was employed for conversion of F^- in
1655 volatile F-SiR_3 [352–354]. A general study of this reaction
1656 was carried out by Yamamoto et al. [355] where forma-
1657 tion of several fluoroalkylsilanes was attained with X-SiR_3
1658 reagents ($\text{X} = \text{Cl}$, imidazole and $\text{R} = \text{methyl, ethyl, iso-}$
1659 propyl, dimethyl, and *t*-butyldimethyl). For this purpose,
1660 a water F^- standard was diluted in 5 mL HCl 1.2 M fol-
1661 lowing addition of 1 mL of 2% X-SiR_3 in *n*-hexane. The
1662 reaction time for the TECS (90 min) was longer than with
1663 TMCS (5min), but the sensitivity of TES derivative was
1664 twice higher [355]. Already in early days, the implemen-
1665 tation of this derivatization chemistry allowed trace deter-
1666 mination of fluoride in complex biological samples by GC
1667 [356]. Despite TECS seems to offer analytical advantages,
1668 in more recent studies TMS chemistry was preferred. Hui
1669 and Minami [357] used TMCS for GC-FID determina-
1670 tion of fluoride in urine samples with detection limits of 0.01
1671 ppm; 1,1,1-trichloroethane was used as internal standard
1672 and $\text{Me}_3\text{Si-F}$ extraction was obtained in toluene. $\text{Me}_3\text{Si-F}$
1673 has a boiling point of only 16.4 °C and a favorable partition
1674 into gas-phase at room temperature. For this reason, in
1675 recent studies the liquid-liquid extraction of $\text{Me}_3\text{Si-F}$ has
1676 been replaced by headspace sampling techniques which al-
1677 low for a much cleaner chromatography for complex mat-
1678 rices. Static headspace was implemented for the determina-
1679 tion of fluoride in milk with 0.01 $\mu\text{g/mL}$ detection limit on
1680 FID detector [358]. Also SPME [359] and headspace single
1681 drop microextraction [360] were proposed for determina-
1682 tion of F^- in toothpaste and water with detection limit in
1683 the low part-per-billion. Alternative carbon-based chem-
1684 istry has also been employed for F^- . Kage et al. [361]
1685 converted F^- in PFB-F using direct alkylation in acetone
1686 with commercial PFB-Br at 80 °C. In positive EI the de-
1687 tection limit was only 0.5 mg/L, but a much higher sen-
1688 sitivity would be expected in negative chemical ionization
1689 mode. Alkylation with triethyloxonium tetrachloroferrate
1690 (III) was implemented for the F^- ethylation in aqueous
1691 solution:




Table 6: Derivatization chemistries recently employed for the conversion of thiocyanate, cyanide and sulfide in volatile derivatives

Derivative	Reagents	Notes (Year)	Ref.
HCN	Inorganic acid	$\text{CN}^- + \text{H}^+ \rightarrow \text{HCN}$. Direct headspace or SPME with cryogenic cooling. Employed for blood analysis with DL of 3–8 $\mu\text{g}/\text{L}$. Artifactual formation of CN^- from SCN^- is reported (1963–2008)	[285–299]
CNCl	Chloramine-T	Previous separation of CN- from the matrix as HCN via acidification is required. Reaction occurs at 20–65°C within 90 min with 0.25–1.5% chloramine T (1974–2008)	[315–320]
MeSCN, MeCN, and Me ₂ S	(MeO) ₂ SO ₂	Aqueous derivatization at 60 °C for 30 min with KOH. Quantitative conversion of SCN^- . Applied for quantitation of salivary SCN^- with a DL of 0.2 ng/mL (1982, 2014)	[31, 32, 321]
Me ₂ S and Me ₂ S _n	MeI	Methylation of sulfide and polysulfides following HS GC-MS with DL of 50–240 ng/L. Sulfide derivative (Me ₂ S) can be an endogenous compound in natural water (2010)	[323]
EtSCN	$\text{Et}_3\text{O}^+[\text{BF}_4]^-$	HS GC-MS determination of salivary thiocyanate (1–400 $\mu\text{g}/\text{g}$, RSD < 2%) with direct aqueous derivatization at room temperature (2015)	[73]
PFB-SCN, PFB-CN, and PFB ₂ S	PFB-Br	Conversion of SCN^- to CN^- was observed with direct alkylation in acetone or ethanol, but not with extractive alkylation. Widely applied for clinical, forensic and environmental analysis for measurement at the part-per-billion (1981–2017)	[42, 51, 53, 57, 324–330]
NED-SH, NED ₂ S, and NED-SR	<i>N</i> -ethyl-maleimide (NEM)	Aqueous derivatization of volatile alkanethiols and H ₂ S followed by SPME GC-MS with detection at the low part-per-trillion (20005)	[332]
R ₂ S	3-buten-2-one	Overnight reaction in aqueous medium at RT, and extraction of the derivatives in organic solvent. At pH 7.4 double alkylation of H ₂ S was predominant resulting in (CH ₃ (C=O)CH ₂ CH ₂) ₂ -S. Na ³⁴ S was employed for isotope dilution GC-MS quantitation (2016)	[333]
Heptafluoro butyric acid alphacyanobenzyl ester	Benzaldehyde (1st step) HFB-Cl (2nd step)	Two-step derivatization, reaction time less than 5 min at RT. Proteins do not interfere with the assay. CN ⁻ determination in urine and blood with DL of 10–40 ng/mL on GC-MS (2009)	[338]
Me ₂ N(CH ₂) ₂ SCN	Me ₂ N(CH ₂) ₂ SH	CN ⁻ derivatization in aqueous medium at 60 °C for 20 min. Applied for water analysis by GC-MS/MS with a DL of 20 ng/L (2014)	[339]

1693 The derivatization was held in alkaline ammonia buffer
1694 which limit the interference of aqueous cations like
1695 Fe^{3+} with detection limit of 3.2 $\mu\text{g}/\text{L}$ for headspace
1696 GC-MS [76]. Recently, fluoride has been deter-
1697 mined in plasma and urine after derivatization with 2-
1698 (bromomethyl)naphthalene to 2-(fluoromethyl)naphthalene,
1699 using 2-fluoronaphthalene as internal standard [362]. The
1700 derivatization was conducted in aqueous environment at 70
1701 °C for 70 min with 15-crown-5-ether as phase transfer cat-
1702 alyst, and the derivative extracted with dichloromethane.
1703 The method was successively improved for headspace anal-
1704 ysis using SPME sampling (CAR/PDMS fiber) with detec-


tion limit of 9–11 $\mu\text{g}/\text{L}$ on a GC-MS/MS setup for fluoride in plasma and urine [363]. For the other halides, use of silyl chemistry is unsuitable for analytical purpose: Si-X bound is only stable when X = F, but not for Cl, Br, and I where derivatives are moisture sensitive. For thus analytes, alky-
1705 lation is a common strategy and the correspondent halo-
1706 carbon derivatives are stable and can be sampled in the
1707 headspace providing clean chromatography even with com-
1708 plex matrices (see paragraph 3.2 and Table 1). Methylation
1709 with dimethyl sulphate was employed for quantita-
1710 tion of urinary bromide at 0.1–10 mM concentration range
1711 [364]. However such reagent is extremely toxic, carcino-
1712

1717 genic, and mutagenic therefore other alkylating agents are
 1718 preferred. Recently we proposed the use of commercial
 1719 triethyloxonium tetrafluoroborate salt for aqueous ethylation
 1720 of halides [41]. The general aspects of this chemistry
 1721 are outlined in paragraph 3.2.2 and applications includes
 1722 the determination of iodine in starch [365, 366] and high-
 1723 precision isotope dilution for measurement of bromide in
 1724 groundwater with detection limit of 0.25 ng/g and relative
 1725 standard uncertainty better then 0.5 % for quantitation
 1726 of 100 ng/g (GC-MS detection in EI) [74]. The use of
 1727 ethylene oxide has also been proposed for conversion of
 1728 Cl^- , Br^- , and I^- in the corresponding 2-haloethanol with
 1729 quantitative conversion [367]. Despite potential analytical
 1730 interest for this chemistry, hazards handling this gaseous
 1731 toxic reagent have posed limitation to the development
 1732 of such technique. Another reaction scheme proposed for
 1733 volatilization of Cl^- , Br^- , and I^- entails conversion into
 1734 phenylmercury (II) compounds accordingly to the follow-
 1735 ing scheme [368–371]:

1737 Already in the seventies this derivatization allowed for
 1738 the quantitation of as little as 8 ng/g of chloride in wa-
 1739 ter samples by GC-FID [368]. This chemistry has not
 1740 been employed to complex matrices and its applicability
 1741 is penalized by the use of a mercury compounds whose
 1742 presence poses health and environmental concerns. An-
 1743 other strategy common for Cl^- , Br^- , and I^- is based
 1744 on their oxidation to X_2 form followed by reaction with
 1745 an organic compounds. In 1972, Archer [372] mea-
 1746 sured bromide in blood (0.1–1.0 mg/ml with GC-FID)
 1747 after its conversion to Br_2 (70% efficiency) by KMnO_4
 1748 in diluted H_2SO_4 . Br_2 was then reacted with cyclo-
 1749 hexene to yield 1,2-dibromocyclohexane. The author
 1750 found that also chlorine, from chloride, reacts to give
 1751 1,2-dichlorocyclohexane, while organobromine compounds
 1752 gave a negligible response. Mishra et al. [373] employed
 1753 selective 2-iodobenzoic acid for oxidation $\text{Br}^- \rightarrow \text{Br}_2$
 1754 and resulting bromine was trapped by reaction with 2,6-
 1755 dimethylphenol to 4-bromo-2,6-dimethylphenol with pro-
 1756 viding a detection limit of only 5 ng/L on GC-MS. In a
 1757 similar fashion determination of iodine in milk was pro-
 1758 posed after I^- conversion to I_2 and reaction with acetone
 1759 to yield monoiodoacetone which was back-liquid extracted
 1760 in *n*-hexane [374]. The method was modified by Maros
 1761 et al. [375], which obtained the quantitative oxidation
 1762 of iodide and bromide by chromate and permanganate
 1763 in acidic solutions and in the presence of acetone with
 1764 application to complex matrices such as seawater, urine,
 1765 blood, and milk with a relative standard deviation of 1.9%
 1766 and 3.0% for 100 nM Br^- and 10 mM I^- respectively.
 1767 Such an approach is not only useful for halides (X^-),
 1768 but also for determination of their oxidized forms (XO_3^-).
 1769 Bromate was measured in drinking water after reduction
 1770 to Br_2 and reaction with styrene [376] or ethyl acetate

1771 [377] with detection limits of 22 ng/L on GC-MS. Fur-
 1772 thermore, Shin et al. [378] proposed a method for the io-
 1773 dine/iodide/iodate determination after conversion of these
 1774 anions to I_2 following reaction with 2,6-dimethylphenol
 1775 to 4-iodo-2,6-dimethylphenol within 20 min. With the
 1776 Hewlett-Packard 5890/5971 GC-MS system the detection
 1777 limit reported for $\text{I}_2/\text{I}^-/\text{IO}_3^-$ where of 0.5 ng/mL. Typi-
 1778 cally reduction $\text{IO}_3^- \rightarrow \text{I}^-$ was attained using ascorbic acid
 1779 [379, 380] or sodium metabisulfite [381] whereas oxidation
 1780 of $\text{I}^- \rightarrow \text{I}_2$ with 2-iodosobenzoate [379–381]. For a faster I_2
 1781 trapping reaction, the use of N,N-dimethylaniline allowed
 1782 a complete reaction in only 1 min and was preferred in
 1783 earlier studies:

1785 The 4-iodo-N,N-dimethylaniline can be extracted in or-
 1786 ganic solvent and measured by GC-MS. Such an approach
 1787 has found applications for speciation of iodide, iodate, io-
 1788 dine and organo-iodide in several matrices such as natural
 1789 water and food with detection limit in the low part-per-
 1790 trillion by GC-MS [379–381]. Furthermore the method was
 1791 implemented for monitoring ^{129}I contamination in the Sa-
 1792 vannah River Site in South Carolina with detection limit
 1793 of 0.08 nM for both $^{129}\text{I}^-$ and $^{129}\text{IO}_3^-$. In 2007 Reddy-
 1794 Noone et al. [382] employed a similar reactivity for the
 1795 determination of BrO_3^- and IO_3^- in seawater and table
 1796 salt. Br^- and I^- were removed by ion exchange and the
 1797 oxyhalides were reduced with ascorbic acid to X^- form,
 1798 following conversion to 4-bromo-2,6-dimethylaniline and
 1799 4-iodo-2,6-dimethylaniline using 2,6-dimethylaniline. De-
 1800 tection limits in the tens of ppb are reported.

5. Health and safety consideration

1801 Anions determination by gas chromatography can only be
 1802 achieved using chemistries for the conversion of such ana-
 1803 lytes in volatile derivatives. When working with reagents
 1804 on a regular basis, an important question to be addressed
 1805 is about health and safety hazards related with manipula-
 1806 tion of these substances. Among the plethora of reactions
 1807 we reviewed, some are more friendly then others and in Ta-
 1808 ble XX we recompiled all chemicals cited in the text with a
 1809 health and safety angle. All information reported in Table
 1810 XX were obtained from the Material Safety Data Sheets
 1811 (MSDS) available on-line on the Sigma-Aldrich website
 1812 and are therfore updated to current knowledge on such
 1813 reagents.

6. Conclusion

1816 **References**

[1] K. Blau, J. M. Halket (Eds.), *Handbook of Derivatives for Chromatography*, 2E, 2nd Edition, Wiley, 1993.

[2] C. Poole, W.-F. Sye, S. Singhawangcha, F. Hsu, A. Zlatkis, A. Arfwidsson, J. Vessman, New electron-capturing pentafluorophenyldialkylchlorosilanes as versatile derivatizing reagents for gas chromatography, *Journal of Chromatography A* 199 (1980) 123–142. doi:10.1016/s0021-9673(01)91366-4.

[3] D. R. Knapp, *Handbook of Analytical Derivatization Reactions*, 1st Edition, Wiley-Interscience, 1979.

[4] K. Blau, G. King, *Handbook of derivatives for chromatography*, Heyden, 1978.

[5] J. L. Little, Artifacts in trimethylsilyl derivatization reactions and ways to avoid them, *Journal of Chromatography A* 844 (1999) 1–22. doi:10.1016/s0021-9673(99)00267-8.

[6] J. Halket, V. Zaikin, Review: Derivatization in mass spectrometry—1. silylation, *European Journal of Mass Spectrometry* 9 (2003) 1–21. doi:10.1255/ejms.527.

[7] C. F. Poole, Alkylsilyl derivatives for gas chromatography, *Journal of Chromatography A* 1296 (2013) 2–14. doi:10.1016/j.chroma.2013.01.097.

[8] C. W. Lentz, Silicate minerals as sources of trimethylsilyl silicates and silicate structure analysis of sodium silicate solutions, *Inorganic Chemistry* 3 (4) (1964) 574–579. doi:10.1021/ic50014a029.

[9] F. Wu, J. Götz, W. Jamieson, C. Masson, Determination of silicate anions by gas chromatographic separation and mass spectrometric identification of their trimethylsilyl derivatives, *Journal of Chromatography A* 48 (1970) 515–520. doi:10.1016/s0021-9673(01)85585-0.

[10] G. Garzó, D. Hoebbel, Z. J. Ecsery, K. Ujszászi, Gas chromatography of trimethylsilylated silicate anions, *Journal of Chromatography A* 167 (1978) 321–336. doi:10.1016/s0021-9673(00)91167-1.

[11] K. Kuroda, C. Kato, Trimethylsilylation of hemimorphite, *Journal of Inorganic and Nuclear Chemistry* 41 (7) (1979) 947–951. doi:10.1016/0022-1902(79)80068-8.

[12] T. Shimono, T. Isobe, T. Tarutani, Determination of trimethylsilyl derivatives of silicate anions by gas chromatography using a hydrogen flame-ionization detector, *Journal of Chromatography A* 205 (1981) 49–56. doi:10.1016/s0021-9673(00)81812-9.

[13] D. Hoebbel, J. Götz, A. Varga, W. Wieker, Determination of silicate anion constitution in glassy and crystalline lead silicates using an improved TMS technique, *Journal of Non-Crystalline Solids* 69 (1984) 149–159. doi:10.1016/0022-3093(84)90131-5.

[14] J. Haken, N. Harahap, R. Burford, Gas chromatographic procedure for the qualitative analysis of silicone polyester resins after alkaline fusion, *Journal of Chromatography A* 441 (1988) 207–212. doi:10.1016/s0021-9673(01)84667-7.

[15] T. Shimono, T. Isobe, T. Tarutani, Study of the polymerization of silicic acid in aqueous solution by trimethylsilylation—gas chromatography, *Journal of Chromatography A* 258 (1983) 73–80. doi:10.1016/s0021-9673(00)96399-4.

[16] M.-C. Pan, W.-J. Deng, Y.-X. Yang, Y.-R. Chen, A study on waterglass aging by determination of oligomers using feasible trimethylsilyl-gas-chromatography method, *Glass Physics and Chemistry* 36 (1) (2010) 110–115. doi:10.1134/s1087659610010189.

[17] G. Garzó, A. Varga, T. Székely, D. Hoebbel, Reactions of trimethylsilylated silicate anions in acidic medium. part 1. effect of amberlyst 15 cation-exchange resin on the products of trimethylsilylation of hexameric ring silicates, *Journal of the Chemical Society, Dalton Transactions* (1980) 2068–2074 doi:10.1039/dt9800002068.

[18] J. Rodriguez-Vázquez, Quantitative inorganic analysis by gas chromatography, *Analytica Chimica Acta* 73 (1974) 1–32. doi:10.1016/s0003-2670(01)82802-6.

[19] W. C. Butts, Gas chromatography of trimethylsilyl derivatives of common anions, *Analytical Letters* 3 (1) (1970) 29–34. doi:10.1080/00032717008080862.

[20] W. C. Butts, W. T. Rainey, Gas chromatography and mass spectrometry of the trimethylsilyl derivatives of inorganic anions, *Analytical Chemistry* 43 (1971) 538–542. doi:10.1021/ac60299a004.

[21] T. P. Mawhinney, Separation and analysis of sulfate, phosphate and other oxyanions as their tert.-butyldimethylsilyl derivatives by gas—liquid chromatography and mass spectrometry, *Journal of Chromatography A* 257 (1983) 37–44. doi:10.1016/s0021-9673(01)88150-4.

[22] T. P. Mawhinney, Gas chromatography of common anions as their tert.-butyldimethylsilyl derivatives, *Analytical Letters* 16 (1983) 159–166. doi:10.1080/00032718308065158.

[23] D. R. Matthews, W. D. Shults, M. R. Guerin, J. A. Dean, Extraction-derivatization-gas chromatographic determination of trace phosphate in aqueous media, *Analytical Chemistry* 43 (1971) 1582–1585. doi:10.1021/ac60306a014.

[24] R. Walsh, Bond dissociation energy values in silicon-containing compounds and some of their implications, *Accounts of Chemical Research* 14 (1981) 246–252. doi:10.1021/ar00068a004.

[25] R. J. Wells, Recent advances in non-silylation derivatization techniques for gas chromatography, *Journal of Chromatography A* 843 (1999) 1–18. doi:10.1016/s0021-9673(98)00986-8.

[26] F. Orata, Derivatization reactions and reagents for gas chromatography analysis, in: *Advanced Gas Chromatography - Progress in Agricultural, Biomedical and Industrial Applications*, InTech, 2012. doi:10.5772/33098.

[27] J. MacGee, K. G. Allen, Alkylation and gas chromatography of aqueous inorganic halides, *Analytical Chemistry* 42 (1970) 1672–1673. doi:10.1021/ac60295a027.

[28] W. M. Moore, Simultaneous determination of chloride, bromide, and iodide by gas chromatography, *Analytical Chemistry* 54 (1982) 602–604. doi:10.1021/ac00240a064.

[29] D. R. Matthews, W. D. Shults, J. A. Dean, Gas chromatographic determination of aqueous halides, *Analytical Letters* 6 (1973) 513–522. doi:10.1080/00032717308058699.

[30] P. Jacob, C. Savanapridi, L. Yu, M. Wilson, A. T. Shulgin, N. L. Benowitz, B. A. Elias-Baker, S. M. Hall, R. I. Herning, R. T. Jones, D. P. L. Sachs, Ion-pair extraction of thiocyanate from plasma and its gas chromatographic determination using on-column alkylation, *Analytical Chemistry* 56 (1984) 1692–1695. doi:10.1021/ac00273a036.

[31] K. Funazo, M. Tanaka, T. Shono, Methylation of inorganic anions for gas chromatographic determination, *Journal of Chromatography A* 211 (1981) 361–368. doi:10.1016/s0021-9673(00)83065-4.

[32] M. Tanaka, K. Funazo, T. Hirashima, T. Shono, Ethylation of inorganic anions, phenols and carboxylic acids for gas chromatographic determination, *Journal of Chromatography A* 234 (1982) 373–379. doi:10.1016/s0021-9673(00)81875-0.

[33] W. Faigle, D. Klockow, Gas-chromatographic determination of traces of nitrate, sulphate, and phosphate in aqueous media, *Fresenius' Zeitschrift für Analytische Chemie* 306 (1981) 190–195. doi:10.1007/bf00482094.

[34] K. Funazo, T. Hirashima, H.-L. Wu, M. Tanaka, T.-H. Shono, Simultaneous determination of trace amounts of bromide and iodide by methylation with dimethyl sulphate and electron-capture gas chromatography, *Journal of Chromatography A* 243 (1982) 85–92. doi:10.1016/s0021-9673(00)88166-2.

[35] K. J. Mulligan, Aqueous alkylation of anions for static headspace sampling with analysis by capillary gas chromatography-mass spectrometry, *Journal of Microcolumn Separations* 7 (1995) 567–573. doi:10.1002/mcs.1220070603.

[36] W. Faigle, D. Klockow, Gas-chromatographic determination of traces of chloride, bromide, iodide, cyanide, thiocyanate, and nitrate in aqueous media using phase transfer catalysis for derivatization, *Fresenius' Zeitschrift für Analytische Chemie* 310 (1982) 33–38. doi:10.1007/bf00481935.

[37] K. Funazo, H.-L. Wu, K. Morita, M. Tanaka, T. Shono, Butylation of inorganic anions for simultaneous determination by

1957 gas chromatography, *Journal of Chromatography A* 319 (1985) 143–152. doi:10.1016/s0021-9673(01)90549-7.

1958 [38] S. Kage, K. Kudo, N. Ikeda, Determination of azide in 1959 blood and urine by gas chromatography-mass spectrometry, *Journal of Analytical Toxicology* 24 (6) (2000) 429–432. doi:10.1093/jat/24.6.429.

1960 [39] D. Tsikas, Simultaneous derivatization and quantification of 1961 the nitric oxide metabolites nitrite and nitrate in biological 1962 fluids by gas chromatography/mass spectrometry, *Analytical 1963 Chemistry* 72 (2000) 4064–4072. doi:10.1021/ac9913255.

1964 [40] M. Sakayanagi, Y. Yamada, C. Sakabe, K. Watanabe, Y. Hari- 1965 gaya, Identification of inorganic anions by gas chromatog- 1966 raphy/mass spectrometry, *Forensic Science International* 157 1967 (2006) 134–143. doi:10.1016/j.forsciint.2005.04.003.

1968 [41] A. D'Ulivo, E. Pagliano, M. Onor, E. Pitzalis, R. Zamboni, 1969 Vapor generation of inorganic anionic species after aqueous phase 1970 alkylation with trialkyloxonium tetrafluoroborates, *Analytical 1971 Chemistry* 81 (2009) 6399–6406. doi:10.1021/ac900865d.

1972 [42] B. Campanella, L. Biancalana, L. D'Ulivo, M. Onor, E. Bra- 1973 manti, Z. Mester, E. Pagliano, Determination of total cyanide 1974 in soil by isotope dilution GC/MS following pentafluoroben- 1975 zyl derivatization, *Analytica Chimica Acta* 961 (2017) 74–81. 1976 doi:10.1016/j.aca.2017.01.026.

1977 [43] D. Tsikas, Pentafluorobenzyl bromide—a versatile derivati- 1978 zation agent in chromatography and mass spectrometry: I. analysis 1979 of inorganic anions and organophosphates, *Journal of Chromatography B* 1043 (2017) 187–201. doi:10.1016/j.jchromb.2016.08.015.

1980 [44] K. Funazo, M. Tanaka, K. Morita, M. Kamino, T. Shono, 1981 H.-L. Wu, Pentafluorobenzyl p-toluenesulphonate as a new 1982 derivatizing reagent for gas chromatographic determination of 1983 anions, *Journal of Chromatography A* 346 (1985) 215–225. 1984 doi:10.1016/s0021-9673(00)90507-7.

1985 [45] K. Funazo, M. Tanaka, K. Morita, M. Kamino, T. Shono, 1986 Pentafluorobenzyl p-toluenesulphonate as a new derivatizing 1987 reagent for electron-capture gas chromatographic determina- 1988 tion of trace inorganic anions, *Journal of Chromatography A* 354 (1986) 259–267. doi:10.1016/s0021-9673(01)87027-8.

1989 [46] K. Tsuge, Y. Seto, Simultaneous detection of anionic toxic 1990 substances using gc-ms analysis of pentafluorobenzyl derivatives, 1991 *Japanese Journal of Science and Technology for Identification* 1992 7 (2002) 19–35. doi:10.3408/jasti.7.19.

1993 [47] S.-H. Chen, H.-L. Wu, M. Tanaka, T. Shono, K. Funazo, 1994 Simultaneous gas chromatographic determination of iodide, 1995 nitrite, sulphide and thiocyanate anions by derivatization with 1996 pentafluorobenzyl bromide, *Journal of Chromatography A* 396 (1987) 129–137. doi:10.1016/s0021-9673(01)94049-x.

1997 [48] O. Gyllenhaal, Degradation of pentafluorobenzyl bromide 1998 in the extractive alkylation procedure, *Journal of Chromatography A* 153 (2) (1978) 517–520. doi:10.1016/s0021-9673(00)95512-2.

1999 [49] S.-H. Chen, H.-L. Wu, M. Tanaka, T. Shono, K. Funazo, 2000 Simultaneous gas chromatographic determination of cyanide, 2001 iodide, nitrite, sulphide and thiocyanate anions by derivatization 2002 with pentafluorobenzyl bromide and using a kryptand as phase- 2003 transfer catalyst, *Journal of Chromatography A* 502 (1990) 2004 257–264. doi:10.1016/s0021-9673(01)89590-x.

2005 [50] B. Davis, Crown ether catalyzed derivatization of carboxylic 2006 acids and phenols with pentafluorobenzyl bromide for electron 2007 capture gas chromatography, *Analytical Chemistry* 49 (1977) 2008 832–834. doi:10.1021/ac50014a041.

2009 [51] H.-L. Wu, K. Funazo, M. Tanaka, T. Shono, Electron-capture 2010 gas chromatographic determination of sulphide as a new 2011 pentafluorobenzyl derivative, *Journal of Chromatography A* 219 (2) (1981) 312–316. doi:10.1016/s0021-9673(00)87943-1.

2012 [52] W. Hsin-Lung, C. Su-Hwei, L. Shun-Jin, H. Wen-Rung, K. Fu- 2013 nazo, M. Tanaka, T. Shono, Gas chromatographic determina- 2014 tion of inorganic anions as pentafluorobenzyl derivatives, *Journal of Chromatography A* 269 (1983) 183–190. doi:10.1016/s0021-9673(01)90802-7.

2015 [53] H.-L. Wu, W.-R. Hwang, K. Funazo, M. Tanaka, T. Shono, 2016 Electron-capture gas chromatographic determination of 2017 cyanide as pentafluorobenzyl cyanide, *Journal of Chromatography A* 284 (1984) 193–200. doi:10.1016/s0021-9673(01)87815-8.

2018 [54] S. Kage, K. Kudo, N. Ikeda, Simultaneous determination of 2019 nitrate and nitrite in human plasma by gas chromatography- 2020 mass spectrometry, *Journal of Analytical Toxicology* 26 (6) (2002) 2021 320–324. doi:10.1093/jat/26.6.320.

2022 [55] D. Tsikas, K. Sutmöller, M. Maassen, M. Nacke, A. Böhmer, 2023 A. Mitschke, H. Konrad, H. Starke, H. Hummeler, N. Maassen, 2024 Even and carbon dioxide independent distribution of nitrite 2025 between plasma and erythrocytes of healthy humans at rest, 2026 *Nitric Oxide* 31 (2013) 31–37. doi:10.1016/j.niox.2013.03.002.

2027 [56] X. Yang, C. P. Bondonno, A. Indrawan, J. M. Hodgson, K. D. Croft, An improved mass spectrometry-based measurement of NO metabolites in biological fluids, *Free Radical Biology and Medicine* 56 (2013) 1–8. doi:10.1016/j.freeradbiomed.2012.12.002.

2028 [57] S. Kage, T. Nagata, K. Kudo, Determination of cyanide and 2029 thiocyanate in blood by gas chromatography and gas chromatography-mass spectrometry, *Journal of Chromatography B: Biomedical Sciences and Applications* 675 (1996) 27–32. doi:10.1016/0378-4347(95)00344-4.

2030 [58] D. Tsikas, K. Chobanyan-Jurgens, Quantification of carbonate by gas chromatography-mass spectrometry †, *Analytical Chemistry* 82 (19) (2010) 7897–7905. doi:10.1021/ac1007688.

2031 [59] S. Kage, K. Kudo, H. Ikeda, A. Tsujita, N. Ikeda, Determination of bromide in whole blood and urine from humans using gas chromatography-mass spectrometry, *Journal of Chromatography B* 817 (2005) 335–339. doi:10.1016/j.jchromb.2004.12.017.

2032 [60] M. Tanaka, H. Takigawa, Y. Yasaka, T. Shono, K. Funazo, H.-L. Wu, Derivatization of inorganic anions with pentafluorobenzyl methanesulphonate for gas chromatography, *Journal of Chromatography A* 404 (1987) 175–182. doi:10.1016/s0021-9673(01)86848-5.

2033 [61] S.-J. Lin, H.-L. Wu, C.-Y. Lin, A new derivatization reagent 2-(pentafluorophenoxy)ethyl 2-(piperidino)ethanesulfonate for 2034 gas chromatography, *Analytica Chimica Acta* 386 (1-2) (1999) 113–122. doi:10.1016/s0003-2670(98)00850-2.

2035 [62] S. Strassnig, T. Wenzl, E. P. Lankmayr, Microwave-assisted 2036 derivatization of volatile carbonyl compounds with o-(2, 3, 4, 5, 6-pentafluorobenzyl)hydroxylamine, *Journal of Chromatography A* 891 (2000) 267–273. doi:10.1016/s0021-9673(00)00642-7.

2037 [63] N. Li, C. Deng, N. Yao, X. Shen, X. Zhang, Determination 2038 of acetone, hexanal and heptanal in blood samples by 2039 derivatization with pentafluorobenzyl hydroxylamine followed 2040 by headspace single-drop microextraction and gas chromatog- 2041 raphy-mass spectrometry, *Analytica Chimica Acta* 540 (2005) 317–323. doi:10.1016/j.aca.2005.03.047.

2042 [64] J. T. Simpson, D. S. Torok, S. P. Markey, Pentafluoroben- 2043 zyl chloroformate derivatization for enhancement of detection 2044 of amino acids or alcohols by electron capture negative ion 2045 chemical ionization mass spectrometry, *Journal of the American Society for Mass Spectrometry* 6 (1995) 525–528. doi:10.1016/1044-0305(95)00231-2.

2046 [65] K. Dettmer-Wilde, W. Engewald (Eds.), *Practical Gas 2047 Chromatography*, Springer Science Business Media, 2014. doi:10.1007/978-3-642-54640-2.

2048 [66] H. Meerwein, G. Hinz, P. Hofmann, E. Koning, E. Pfeil, Über 2049 tertiäre oxoniumsalze, I, *Journal für Praktische Chemie* 147 (1937) 257–285. doi:10.1002/prac.19371471001.

2050 [67] H. Meerwein, E. Battenberg, H. Gold, Über tertiäre oxonium- 2051 salze, II, *Journal für Praktische Chemie* 154 (1939) 83–156. doi:10.1002/prac.19391540305.

2052 [68] H. Perst, *Oxonium ions in organic chemistry*, Verlag Chemie 2053 Academic Press, Weinheim, 1971.

2054 [69] V. G. Granik, B. M. Pyatin, R. G. Glushkov, The chemistry 2055 of trialkyloxonium fluoroborates, *Russian Chemical Reviews* 40 (1971) 747–759. doi:10.1070/rcc1971v040n09abeh001967.

2099 [70] G. A. Olah, K. K. Laali, Q. Wang, G. K. Surya Prakash,
2100 Onium Ions, Wiley, New York, 1998.
2101 [71] G. J. King, C. Gazzola, R. L. Blakeley, B. Zerner, Tri-
2102 ethyloxonium tetrafluoroborate as an ethylating agent in
2103 aqueous solution, *Inorganic Chemistry* 25 (1986) 1078–1078.
2104 doi:10.1021/ic00228a003.
2105 [72] E. Pagliano, J. Meija, Z. Mester, High-precision quadrupole iso-
2106 tope dilution method for simultaneous determination of nitrite
2107 and nitrate in seawater by GCMS after derivatization with tri-
2108 ethyloxonium tetrafluoroborate, *Analytica Chimica Acta* 824
2109 (2014) 36–41. doi:10.1016/j.aca.2014.03.018.
2110 [73] S. Ammazzini, M. Onor, E. Pagliano, Z. Mester, B. Cam-
2111 panella, E. Pitzalis, E. Bramanti, A. D’Ulivo, De-
2112 termination of thiocyanate in saliva by headspace gas
2113 chromatography-mass spectrometry, following a single-step
2114 aqueous derivatization with triethyloxonium tetrafluoroboro-
2115 rate, *Journal of Chromatography A* 1400 (2015) 124–130.
2116 doi:10.1016/j.chroma.2015.04.040.
2117 [74] E. Pagliano, Z. Mester, J. Meija, Reduction of measure-
2118 ment uncertainty by experimental design in high-order (dou-
2119 ble, triple, and quadrupole) isotope dilution mass spectrom-
2120 etry: application to GC-MS measurement of bromide, *An-
2121 alytical and Bioanalytical Chemistry* 405 (2013) 2879–2887.
2122 doi:10.1007/s00216-013-6724-5.
2123 [75] E. Pagliano, J. Meija, R. E. Sturgeon, Z. Mester, A. D’Ulivo,
2124 Negative chemical ionization GC/MS determination of ni-
2125 trite and nitrate in seawater using exact matching double
2126 spike isotope dilution and derivatization with triethyloxonium
2127 tetrafluoroborate, *Analytical Chemistry* 84 (2012) 2592–2596.
2128 doi:10.1021/ac2030128.
2129 [76] E. Pagliano, J. Meija, J. Ding, R. E. Sturgeon, A. D’Ulivo,
2130 Z. Mester, Novel ethyl-derivatization approach for the de-
2131 termination of fluoride by headspace gas chromatogra-
2132 phy/mass spectrometry, *Analytical Chemistry* 85 (2013) 877–
2133 881. doi:10.1021/ac302303r.
2134 [77] J. Dědina, D. L. Tsalev, *Hydride Generation Atomic Absorp-
2135 tion Spectrometry* (Chemical Analysis: A Series of Mono-
2136 graphs on Analytical Chemistry and Its Applications), 1st Edi-
2137 tion, Wiley, 1995.
2138 [78] R. E. Sturgeon, Z. Mester, Analytical applications of volatile
2139 metal derivatives, *Applied Spectroscopy* 56 (2002) 202A–213A.
2140 doi:10.1366/000370202760249675.
2141 [79] A. D’Ulivo, M. Onor, E. Pitzalis, Role of hydroboron inter-
2142 mediates in the mechanism of chemical vapor generation in
2143 strongly acidic media, *Analytical Chemistry* 76 (2004) 6342–
2144 6352. doi:10.1021/ac0400780.
2145 [80] Z. Long, Y. Luo, C. Zheng, P. Deng, X. Hou, Recent advance
2146 of hydride generation - analytical atomic spectrometry: Part
2147 I - technique development, *Applied Spectroscopy Reviews* 47
2148 (2012) 382–413. doi:10.1080/05704928.2012.666775.
2149 [81] Z. Long, C. Chen, X. Hou, C. Zheng, Recent advance of hy-
2150 dride generation - analytical atomic spectrometry: Part II -
2151 analysis of real samples, *Applied Spectroscopy Reviews* 47
2152 (2012) 495–517. doi:10.1080/05704928.2012.666776.
2153 [82] A. D’Ulivo, V. Loretì, M. Onor, E. Pitzalis, R. Zam-
2154 boni, Chemical vapor generation atomic spectrometry using
2155 amineboranes and cyanotrihydroborate(III) reagents, *Analy-
2156 tical Chemistry* 75 (2003) 2591–2600. doi:10.1021/ac020694p.
2157 [83] E. Pitzalis, M. Onor, M. C. Mascherpa, G. Pacchi, Z. Mester,
2158 A. D’Ulivo, Chemical generation of arsane and methylarsanes
2159 with amine boranes. potentialities for nonchromatographic
2160 speciation of arsenic, *Analytical Chemistry* 86 (2014) 1599–
2161 1607. doi:10.1021/ac4032466.
2162 [84] A. D’Ulivo, Chemical vapor generation by tetrahydroboro-
2163 rate(III) and other borane complexes in aqueous media, *Spectro-
2164 chimica Acta Part B: Atomic Spectroscopy* 59 (2004) 793–
2165 825. doi:10.1016/j.sab.2004.04.001.
2166 [85] A. D’Ulivo, Mechanism of generation of volatile species by
2167 aqueous boranes, *Spectrochimica Acta Part B: Atomic Spec-
2168 troscopy* 65 (2010) 360–375. doi:10.1016/j.sab.2010.04.010.
2169 [86] A. D’Ulivo, J. Dědina, Z. Mester, R. E. Sturgeon, Q. Wang,
2170 B. Welz, Mechanisms of chemical generation of volatile hy-
2171 drides for trace element determination (IUPAC technical re-
2172 port), *Pure and Applied Chemistry* 83. doi:10.1351/pac-rep-
2173 09-10-03.
2174 [87] A. D’Ulivo, Mechanisms of chemical vapor generation by
2175 aqueous tetrahydridoborate. recent developments toward the
2176 definition of a more general reaction model, *Spectrochimica Acta Part B: Atomic Spectroscopy* 119 (2016) 91–107.
2177 doi:10.1016/j.sab.2016.03.003.
2178 [88] A. D’Ulivo, J. Meija, Z. Mester, E. Pagliano, R. E. Stur-
2179 geon, Condensation cascades and methylgroup transfer re-
2180 actions during the formation of arsane, methyl- and dimethyl-
2181 arsane by aqueous borohydride and (methyl) arsenates, *An-
2182 alytical and Bioanalytical Chemistry* 402 (2012) 921–933.
2183 doi:10.1007/s00216-011-5503-4.
2184 [89] V. Devesa, L. M. D. Razo, B. Adair, Z. Drobňá, S. B. Waters,
2185 M. F. Hughes, M. Styblík, D. J. Thomas, Comprehensive anal-
2186 ysis of arsenic metabolites by pH-specific hydride generation
2187 atomic absorption spectrometry, *Journal of Analytical Atomic
2188 Spectrometry* 19 (2004) 1460–1467. doi:10.1039/b407388f.
2189 [90] R. A. Diaz-Bone, M. Hitzke, Multi-element organometal(loid)
2190 speciation by hydride generation-GC-ICP-MS: overcoming the
2191 problem of species-specific optima by using a pH-gradient dur-
2192 ing derivatization, *Journal of Analytical Atomic Spectrometry*
2193 23 (2008) 861. doi:10.1039/b715243d.
2194 [91] B. Welz, M. Melcher, Mechanisms of transition metal inter-
2195 ferences in hydride generation atomic-absorption spectrom-
2196 etry. part 1. influence of cobalt, copper, iron and nickel
2197 on selenium determination, *The Analyst* 109 (1984) 569.
2198 doi:10.1039/an9840900569.
2199 [92] D. Bax, J. Agterdenbos, E. Worrell, J. Kolmer, The mech-
2200 anism of transition metal interference in hydride generation
2201 atomic absorption spectrometry, *Spectrochimica Acta Part B: Atomic Spectroscopy* 43 (1988) 1349–1354. doi:10.1016/0584-
2202 8547(88)80174-5.
2203 [93] A. D’Ulivo, L. Lampugnani, R. Zamboni, Interference stud-
2204 ies in the hydride generation atomic fluorescence spectrometric
2205 determination of selenium using signal shape analysis by a con-
2206 volution technique, *Spectrochimica Acta Part B: Atomic Spec-
2207 troscopy* 47 (1992) 619–631. doi:10.1016/0584-8547(92)80057-
2208 n.
2209 [94] B. Welz, M. Melcher, Mutual interactions of elements in the
2210 hydride technique in atomic absorption spectrometry, *An-
2211 alytica Chimica Acta* 131 (1981) 17–25. doi:10.1016/s0003-
2212 2670(01)93529-9.
2213 [95] P. Barth, V. Krivan, R. Hausbeck, Cross-interferences of
2214 hydride-forming elements in hydride-generation atomic ab-
2215 sorption spectrometry, *Analytica Chimica Acta* 263 (1992)
2216 111–118. doi:10.1016/0003-2670(92)85432-6.
2217 [96] P. J. Craig, S. N. Forster, D. Miller, R. O. Jenkins, An an-
2218 alytical method for the detection of methylantimony species
2219 in environmental matrices: methylantimony levels in some
2220 UK plant material, *The Analyst* 124 (1999) 1243–1248.
2221 doi:10.1039/a903787j.
2222 [97] A. Chatterjee, Y. Shibata, M. Yoneda, R. Banerjee, M. Uchida,
2223 H. Kon, M. Morita, Identification of volatile selenium com-
2224 pounds produced in the hydride generation system from
2225 organoselenium compounds, *Analytical Chemistry* 73 (2001)
2226 3181–3186. doi:10.1021/ac001356w.
2227 [98] E. Schmeisser, W. Goessler, N. Kienzl, K. A. Francesconi,
2228 Volatile analytes formed from arsenosugars: Determination
2229 by HPLC-HG-ICPMS and implications for arsenic speci-
2230 ciation analyses, *Analytical Chemistry* 76 (2004) 418–423.
2231 doi:10.1021/ac034878v.
2232 [99] K. Marschner, S. Musil, J. Dědina, Demethylation of methyl-
2233 arsene species during generation of arsanes with
2234 tetrahydridoborate(1-) in acidic media, *Analytical Chemistry*
2235 88 (2016) 6366–6373. doi:10.1021/acs.analchem.6b00735.
2236 [100] R. Skogerboe, A. Bejmuk, Simultaneous determination of ar-
2237 senic, germanium, and antimony by gas chromatography after
2238 hydride generation, *Analytica Chimica Acta* 94 (1977) 297–
2239

2241 305. doi:10.1016/s0003-2670(01)84530-x.

2242 [101] R. D. Kadeg, G. D. Christian, Gas chromatographic determination of selected group IV—VI element hydrides, *Analytica Chimica Acta* 88 (1977) 117–124. doi:10.1016/s0003-2670(01)96055-6.

2243 [102] W. B. Robbins, J. A. Caruso, F. L. Fricke, Determination of germanium, arsenic, selenium, tin and antimony in complex samples by hydride generation-microwave-induced plasma atomic-emission spectrometry, *The Analyst* (1234). doi:10.1039/an9790400035.

2244 [103] W. B. Robbins, J. A. Caruso, Multielement analysis of selected elemental hydrides by chromatographically coupled plasma emission spectrometry, *Journal of Chromatographic Science* 17 (1979) 360–367. doi:10.1093/chromsci/17.7.360.

2245 [104] M. H. Hahn, K. J. Mulligan, M. E. Jackson, J. A. Caruso, The sequential determination of arsenic, selenium, germanium and tin as their hydrides by gas-solid chromatography with an atomic absorption detector, *Analytica Chimica Acta* 118 (1980) 115–122. doi:10.1016/s0003-2670(01)93721-3.

2246 [105] P. R. Gifford, S. Bruckensteine, Separation and determination of volatile hydrides by gas chromatography with a gold gas-porous electrode detector, *Analytical Chemistry* 52 (1980) 1028–1031. doi:10.1021/ac50057a008.

2247 [106] M. O. Andreea, J. F. Asmode, P. Foster, L. Van't dack, Determination of antimony(III), antimony(V), and methylantimony species in natural waters by atomic absorption spectrometry with hydride generation, *Analytical Chemistry* 53 (1981) 1766–1771. doi:10.1021/ac00235a012.

2248 [107] Y. Odanaka, N. Tsuchiya, O. Matano, S. Goto, Determination of inorganic arsenic and methylarsenic compounds by gas chromatography and multiple ion detection mass spectrometry after hydride generation-heptane cold trap technique, *Analytical Chemistry* 55 (1983) 929–932. doi:10.1021/ac00257a025.

2249 [108] H. Mukai, Y. Ambe, Determination of methylarsenic compounds in airborne particulate matter by gas chromatography with atomic absorption spectrometry, *Analytica Chimica Acta* 193 (1987) 219–229. doi:10.1016/s0003-2670(00)86153-x.

2250 [109] S. Clark, J. Ashby, P. J. Craig, Communication. on-column hydride generation method for the production of volatile hydrides of tin, arsenic and antimony for the gas chromatographic analysis of dilute solutions, *The Analyst* 112 (1987) 1781. doi:10.1039/an9871201781.

2251 [110] S. H. Vien, R. C. Fry, Ultra-sensitive, simultaneous determination of arsenic, selenium, tin, and antimony in aqueous solution by hydride generation gas chromatography with photoionization detection, *Analytical Chemistry* 60 (1988) 465–472. doi:10.1021/ac00156a019.

2252 [111] T. Kaise, H. Yamauchi, T. Hirayama, S. Fukui, Determination of inorganic arsenic and organic arsenic compounds in marine organisms by hydride generation/cold trap/gas chromatography? mass spectrometry, *Applied Organometallic Chemistry* 2 (1988) 339–347. doi:10.1002/aoc.590020410.

2253 [112] L. Ebdon, S. Hill, A. P. Walton, R. W. Ward, Coupled chromatography-atomic spectrometry for arsenic speciation—a comparative study, *The Analyst* 113 (1988) 1159–1165. doi:10.1039/an9881301159.

2254 [113] L. S. Cutter, G. A. Cutter, M. L. C. S. Diego-McGlone, Simultaneous determination of inorganic arsenic and antimony species in natural waters using selective hydride generation with gas chromatography/photoionization detection, *Analytical Chemistry* 63 (1991) 1138–1142. doi:10.1021/ac00011a015.

2255 [114] S. Clark, P. J. Craig, The use of sodium tetraethylborate for the derivatization and analysis of selenium containing compounds, *Microchimica Acta* 109 (1992) 141–144. doi:10.1007/bf01243227.

2256 [115] M. B. de la Calle Gutiñas, R. Lobiński, F. C. Adams, Interference-free determination of selenium(IV) by capillary gas chromatography-microwave-induced plasma atomic emission spectrometry after volatilization with sodium tetraethylborate, *Journal Analytical Atomic Spectrometry* 10 (1995) 111–115. doi:10.1039/ja9951000111.

2257 [116] M. Dodd, S. A. Pergantis, W. R. Cullen, H. Li, G. K. Eigendorf, K. J. Reimer, Antimony speciation in freshwater plant extracts by using hydride generation-gas chromatography-mass spectrometry, *The Analyst* 121 (1996) 223–228. doi:10.1039/an9962100223.

2258 [117] E. M. Krupp, R. Grümpling, U. R. R. Furchtbar, A. V. Hirner, Speciation of metals and metalloids in sediments with LTGC/ICP-MS, *Analytical and Bioanalytical Chemistry* 354 (1996) 546–549. doi:10.1007/s0021663540546.

2259 [118] I. Koch, J. Feldmann, J. Lintschinger, S. V. Serves, W. R. Cullen, K. J. Reimer, Demethylation of trimethylantimony species in aqueous solution during analysis by hydride generation/gas chromatography with aas and icp ms detection, *Applied Organometallic Chemistry* 12 (1998) 129–136. doi:10.1002/(SICI)1099-0739(199802)12:2;129::AID-AOC694;3.0.CO;2-4.

2260 [119] C. M. Tseng, D. Amouroux, I. D. Brindle, O. F. X. Donard, Field cryofocussing hydride generation applied to the simultaneous multi-elemental determination of alkyl-metal(loid) species in natural waters using ICP-MS detection, *Journal of Environmental Monitoring* 2 (2000) 603–612. doi:10.1039/b007499n.

2261 [120] U. M. Grüter, J. Kresimon, A. V. Hirner, A new HG/LTGC/ICP-MS multi-element speciation technique for real samples in different matrices, *Fresenius' Journal of Analytical Chemistry* 368 (2000) 67–72. doi:10.1007/s002160000443.

2262 [121] M. Pantsar-Kallio, A. Korpela, Analysis of gaseous arsenic species and stability studies of arsine and trimethylarsine by gas chromatography-mass spectrometry, *Analytica Chimica Acta* 410 (2000) 65–70. doi:10.1016/s0003-2670(99)00892-2.

2263 [122] U. Grüter, M. Hitzke, J. Kresimon, A. Hirner, Derivatization of organometal(loid) species by sodium borohydride, *Journal of Chromatography A* 938 (2001) 225–236. doi:10.1016/s0021-9673(01)01342-5.

2264 [123] J. Kösters, R. A. Diaz-Bone, B. Planer-Friedrich, B. Rothweiler, A. V. Hirner, Identification of organic arsenic, tin, antimony and tellurium compounds in environmental samples by GC-MS, *Journal of Molecular Structure* 661–662 (2003) 347–356. doi:10.1016/j.molstruc.2003.09.005.

2265 [124] E. Dimitrakakis, C. Haberhauer-Troyer, Y. Abe, M. Ochsenkühn-Petropoulou, E. Rosenberg, Solid-phase microextraction-capillary gas chromatography combined with microwave-induced plasma atomic-emission spectrometry for selenite determination, *Analytical and Bioanalytical Chemistry* 379. doi:10.1007/s00216-004-2641-y.

2266 [125] T. Matoušek, A. Hernández-Zavala, M. Svoboda, L. Langrová, B. M. Adair, Z. Drobňá, D. J. Thomas, M. Stýblo, J. Dědina, Oxidation state specific generation of arsines from methylated arsenicals based on l-cysteine treatment in buffered media for speciation analysis by hydride generation-automated cryotrapping-gas chromatography-atomic absorption spectrometry with the multiatomizer, *Spectrochimica Acta Part B: Atomic Spectroscopy* 63 (2008) 396–406. doi:10.1016/j.sab.2007.11.037.

2267 [126] D. C. Kapsimali, G. A. Zachariadis, Comparison of tetraethylborate and tetraphenylborate for selenite determination in human urine by gas chromatography mass spectrometry, after headspace solid phase microextraction, *Talanta* 80 (2010) 1311–1317. doi:10.1016/j.talanta.2009.09.022.

2268 [127] I. Giráldez, P. Ruiz-Azcona, A. Vidal, E. Morales, Speciation of selenite and selenoamino acids in biota samples by dual stir bar sorptive extraction-single desorption-capillary gas chromatography/mass spectrometry, *Microchemical Journal* 122 (2015) 197–204. doi:10.1016/j.microc.2015.05.007.

2269 [128] S. Hashimoto, K. Fujiwara, K. Fuwa, Determination of phosphorus in natural water using hydride generation and gas chromatography1, *Limnology and Oceanography* 32 (1987) 729–735. doi:10.4319/lo.1987.32.3.0729.

2270 [129] E. Pagliano, M. Onor, M. McCooeye, A. D'Ulivo, R. E. Sturgeon, Z. Mester, Application of direct analysis in real time to a multiphase chemical system: Identification of polymeric

arsanes generated by reduction of monomethylarsenate with sodium tetrahydroborate, *International Journal of Mass Spectrometry* 371 (2014) 42–46. doi:10.1016/j.ijms.2014.07.048.

[130] Y.-W. Chen, N. Belzile, High performance liquid chromatography coupled to atomic fluorescence spectrometry for the speciation of the hydride and chemical vapour-forming elements as, se, sb and hg: A critical review, *Analytica Chimica Acta* 671 (2010) 9–26. doi:10.1016/j.aca.2010.05.011.

[131] D. D. Perrin, *Dissociation Contants of Inorganic Acid and Bases in aqueous solution*, second Edition, Pergamon Oxford, 1982.

[132] A. D'Ulivo, Determination of selenium and tellurium in environmental samples, *The Analyst* 122 (1997) 117–144. doi:10.1039/a704759b.

[133] M. Grau, U. B. Hendgen-Cotta, P. Brouzos, C. Drexhage, T. Rassaf, T. Lauer, A. Dejam, M. Kelm, P. Kleinbongard, Recent methodological advances in the analysis of nitrite in the human circulation: Nitrite as a biochemical parameter of the l-arginine/NO pathway, *Journal of Chromatography B* 851 (2007) 106–123. doi:10.1016/j.jchromb.2007.02.002.

[134] J. O. Lundberg, E. Weitzberg, M. T. Gladwin, The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics, *Nature Reviews Drug Discovery* 7 (2008) 156–167. doi:10.1038/nrd2466.

[135] J. Ma, L. Adornato, R. H. Byrne, D. Yuan, Determination of nanomolar levels of nutrients in seawater, *Trends in Analytical Chemistry* 60 (2014) 1–15. doi:10.1016/j.trac.2014.04.013.

[136] M. Pahlow, U. Riebesell, Temporal trends in deep ocean Redfield ratios, *Science* 287 (2000) 831–833. doi:10.1126/science.287.5454.831.

[137] S. Emerson, S. Mecking, J. Abell, The biological pump in the subtropical North Pacific Ocean: Nutrient sources, Redfield ratios, and recent changes, *Global Biogeochemical Cycles* 15 (2001) 535–554. doi:10.1029/2000gb001320.

[138] K. Keller, R. D. Slater, M. Bender, R. M. Key, Possible biological or physical explanations for decadal scale trends in north pacific nutrient concentrations and oxygen utilization, *Deep-Sea Research Part II: Topical Studies in Oceanography* 49 (2002) 345–362. doi:10.1016/s0967-0645(01)00106-0.

[139] J. L. Sarmiento, N. Gruber, M. A. Brzezinski, J. P. Dunne, High-latitude controls of thermocline nutrients and low latitude biological productivity, *Nature* 427 (2004) 56–60. doi:10.1038/nature02127.

[140] T. F. Stoker, D. Qin, G.-K. Plattner, M. M. B. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley, IPCC 2013, *Climate change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.

[141] P. Santamaría, Nitrate in vegetables: toxicity, content, intake and EC regulation, *Journal of the Science of Food and Agriculture* 86 (2005) 10–17. doi:10.1002/jsfa.2351.

[142] D. Tsikas, F.-M. Gutzki, D. O. Stichtenoth, Circulating and excretory nitrite and nitrate as indicators of nitric oxide synthesis in humans: methods of analysis, *European Journal of Clinical Pharmacology* 62 (2005) 51–59. doi:10.1007/s00228-005-0020-z.

[143] K.-O. Honikel, The use and control of nitrate and nitrite for the processing of meat products, *Meat Science* 78 (2008) 68–76. doi:10.1016/j.meatsci.2007.05.030.

[144] K. Grasshoff, K. Kremling, M. Ehrhardt, *Methods of Seawater Analysis*, Wiley-VCH, 3rd completely rev. and extended ed. Weinheim, New York, Chiester, Brisbane, Singapore and Toronto, 1999.

[145] D. Farrington, A. P. Damant, K. Powell, J. Ridsdale, M. Walker, R. Wood, A comparison of the extraction methods used in the UK nitrate residues monitoring program, *Journal of the Association of Public Analysts* 34 (2006) 1–11.

[146] B. Schnetger, C. Lehners, Determination of nitrate plus nitrite in small volume marine water samples using vanadium(III)chloride as a reduction agent, *Marine Chemistry* 160 (2014) 91–98. doi:10.1016/j.marchem.2014.01.010.

[147] M. Moorcroft, J. Davis, R. G. Compton, Detection and determination of nitrate and nitrite: a review, *Talanta* 54 (2001) 785–803. doi:10.1016/s0039-9140(01)00323-x.

[148] Q.-H. Wang, L.-J. Yu, Y. Liu, L. Lin, R. gang Lu, J. ping Zhu, L. He, Z.-L. Lu, Methods for the detection and determination of nitrite and nitrate: A review, *Talanta* 165 (2017) 709–720. doi:10.1016/j.talanta.2016.12.044.

[149] P. Bruno, M. Caselli, G. de Gennaro, B. D. Tommaso, G. Lastella, S. Mastrolitti, Determination of nutrients in the presence of high chloride concentrations by column-switching ion chromatography, *Journal of Chromatography A* 1003 (2003) 133–141. doi:10.1016/s0021-9673(03)00785-4.

[150] J. E. Melanson, C. A. Lucy, Ultra-rapid analysis of nitrate and nitrite by capillary electrophoresis, *Journal of Chromatography A* 884 (2000) 311–316. doi:10.1016/s0021-9673(99)01340-0.

[151] F. Romitelli, S. A. Santini, E. Chierici, D. Pitocco, B. Tavazzi, A. M. Amorini, G. Lazzarino, E. D. Stasio, Comparison of nitrite/nitrate concentration in human plasma and serum samples measured by the enzymatic batch griess assay, ion-pairing HPLC and ion-trap GC-MS: The importance of a correct removal of proteins in the griess assay, *Journal of Chromatography B* 851 (2007) 257–267. doi:10.1016/j.jchromb.2007.02.003.

[152] G. A. Smythe, G. Matanovic, Specific analysis of nitrate and nitrite by gas chromatography/mass spectrometry, in: *Methods in Enzymology*, Elsevier, 2002, pp. 148–157. doi:10.1016/s0076-6879(02)59179-5.

[153] S. M. Helmke, M. W. Duncan, Measurement of the NO metabolites, nitrite and nitrate, in human biological fluids by GC-MS, *Journal of Chromatography B* 851 (2007) 83–92. doi:10.1016/j.jchromb.2006.09.047.

[154] P. Griess, Vorläufige notiz über die einwirkung von salpetriger säure auf amidinitro- und aminitrophenylsäure, *Annalen der Chemie und Pharmacie* 106.

[155] K. Funazo, K. Kusano, M. Tanaka, T. Shono, Determination of trace amounts of nitrite by derivatisation and gas chromatography, *The Analyst* 107 (1270) (1982) 82. doi:10.1039/an9820700082. URL <https://doi.org/10.1039/an9820700082>

[156] A. Jain, R. M. Smith, K. K. Verma, Gas chromatographic determination of nitrite in water by precolumn formation of 2-phenylphenol with flame ionization detection, *Journal of Chromatography A* 760 (1997) 319–325. doi:10.1016/s0021-9673(96)00801-1.

[157] K. K. Verma, A. J. H. Louter, A. Jain, E. Pocurull, J. J. Vreuls, U. A. T. Brinkman, On-line solid-phase extraction-gas chromatography-ion trap tandem mass spectrometric detection for the nanogram per liter analysis of trace pollutants in aqueous samples, *Chromatographia* 44 (1997) 372–380. doi:10.1007/bf02466313.

[158] A. Tanaka, N. Nose, A. Watanabe, Gas chromatographic determination of nitrite in foods as trimethylsilyl derivative of 1h-benzotriazole, *Journal of Chromatography A* 194 (1980) 21–31. doi:10.1016/s0021-9673(00)81046-8.

[159] S. Dilli, E. Patsalides, Volatile benzotriazole derivatives of the nitrite ion, *Journal of Chromatography A* 280 (1983) 59–68. doi:10.1016/s0021-9673(00)91538-3.

[160] A. Tanaka, N. Nose, F. Yamada, S. Saito, A. Watanabe, Determination of nitrite in human, cow and market milks by gas–liquid chromatography with electron-capture detection, *Journal of Chromatography A* 206 (1981) 531–540. doi:10.1016/s0021-9673(00)88922-0.

[161] M. Akyüz, S. Ata, Determination of low level nitrite and nitrate in biological, food and environmental samples by gas chromatography–mass spectrometry and liquid chromatography with fluorescence detection, *Talanta* 79 (2009) 900–904. doi:10.1016/j.talanta.2009.05.016.

[162] T. Preston, K. Zainal, S. Anderson, S. J. Bury, C. Slater, Isotope dilution analysis of combined nitrogen in natural wa-

ters. iii. nitrate and nitrite, *Rapid Communications in Mass Spectrometry* 12 (1998) 423–428. doi:10.1002/(SICI)1097-0231(19980430)12:8;423::AID-RCM178;3.0.CO;2-2.

[163] D. R. Clark, A. P. Rees, I. Joint, A method for the determination of nitrification rates in oligotrophic marine seawater by gas chromatography/mass spectrometry, *Marine Chemistry* 103 (2007) 84–96. doi:10.1016/j.marchem.2006.06.005.

[164] E. Houben, H. M. Hamer, A. Luypaerts, V. D. Preter, P. Evenepoel, P. Rutgeerts, K. Verbeke, Quantification of ^{15}n -nitrate in urine with gas chromatography combustion isotope ratio mass spectrometry to estimate endogenous NO production, *Analytical Chemistry* 82 (2010) 601–607. doi:10.1021/ac9019208.

[165] D. J. Glover, J. C. Hoffsommer, Gas chromatographic analysis of nitrate and nitrite ions in microgram quantities by conversion to nitrobenzene, *Journal of Chromatography A* 94 (1974) 334–337. doi:10.1016/s0021-9673(01)92392-1.

[166] G. A. Olah, Aromatic substitution. XXVIII. mechanism of electrophilic aromatic substitutions, *Accounts of Chemical Research* 4 (1971) 240–248. doi:10.1021/ar50043a002.

[167] J. W. Tesch, W. R. Rehg, R. E. Sievers, Microdetermination of nitrates and nitrites in saliva, blood, water, and suspended particulates in air by gas chromatography, *Journal of Chromatography A* 126 (1976) 743–755. doi:10.1016/s0021-9673(01)84117-0.

[168] A. A. Johnson, D. G. Burleson, Nitrate analysis in biological fluids by gas chromatography–nitrogen-phosphorous detection, *Analytical Biochemistry* 236 (1996) 331–337. doi:10.1006/abio.1996.0175.

[169] F.-M. Gutzki, D. Tsikas, U. Alheid, J. C. Frölich, Determination of endothelium-derived nitrite/nitrate by gas chromatography/tandem mass spectrometry using $(^{15}\text{n})\text{NaNO}_2$ as internal standard, *Biological Mass Spectrometry* 21 (1992) 97–102. doi:10.1002/bms.1200210207.

[170] N. Lohumi, S. Gosain, A. Jain, V. K. Gupta, K. K. Verma, Determination of nitrate in environmental water samples by conversion into nitrophenols and solid phase extraction-spectrophotometry, liquid chromatography or gas chromatography–mass spectrometry, *Analytica Chimica Acta* 505 (2004) 231–237. doi:10.1016/j.aca.2003.10.060.

[171] G. A. Smythe, G. Matanovic, D. Yi, M. W. Duncan, Trifluoroacetic anhydride-catalyzed nitration of toluene as an approach to the specific analysis of nitrate by gas chromatography–mass spectrometry, *Nitric Oxide* 3 (1999) 67–74. doi:10.1006/niox.1999.0210.

[172] S. J. Jackson, M. Siervo, E. Persson, L. M. McKenna, L. J. C. Bluck, A novel derivative for the assessment of urinary and salivary nitrate using gas chromatography/mass spectrometry, *Rapid Communications in Mass Spectrometry* 22 (2008) 4158–4164. doi:10.1002/rcm.3841.

[173] H. lung Wu, S.-H. Chen, K. Funazo, M. Tanaka, T. Shono, Electron-capture gas chromatographic determination of nitrite as the pentafluorobenzyl derivative, *Journal of Chromatography A* 291 (1984) 409–415. doi:10.1016/s0021-9673(00)95050-7.

[174] D. Tsikas, R. Böger, S. Bode-Böger, F.-M. Gutzki, J. Frölich, Quantification of nitrite and nitrate in human urine and plasma as pentafluorobenzyl derivatives by gas chromatography–mass spectrometry using their ^{15}n -labelled analogs, *Journal of Chromatography B: Biomedical Sciences and Applications* 661 (1994) 185–191. doi:10.1016/0378-4347(94)00374-2.

[175] S. Kage, K. Kudo, N. Ikeda, Determination of nitrate in blood by gas chromatography and gas chromatography–mass spectrometry, *Journal of Chromatography B: Biomedical Sciences and Applications* 742 (2000) 363–368. doi:10.1016/s0378-4347(00)00189-4.

[176] J. Wang, G. Mazza, Quantification of nitrite in the presence of anthocyanins using Griess and GC/MS assays, *Journal of Food Biochemistry* 26 (2002) 339–354. doi:10.1111/j.1745-4514.2002.tb00758.x.

[177] D. Tsikas, A. Schwarz, D. O. Stichtenoth, Simultaneous measurement of $[^{15}\text{n}]$ nitrate and $[^{15}\text{n}]$ nitrite enrichment and concentration in urine by gas chromatography mass spectrometry as pentafluorobenzyl derivatives, *Analytical Chemistry* 82 (2010) 2585–2587. doi:10.1021/ac902970m.

[178] A. Schwarz, D. Modun, K. Heusser, J. Tank, F.-M. Gutzki, A. Mitschke, J. Jordan, D. Tsikas, Stable-isotope dilution GC–MS approach for nitrite quantification in human whole blood, erythrocytes, and plasma using pentafluorobenzyl bromide derivatization: Nitrite distribution in human blood, *Journal of Chromatography B* 879 (2011) 1485–1495. doi:10.1016/j.jchromb.2010.05.011.

[179] E. Hanff, M. Lützow, A. A. Kayaclebi, A. Finkel, M. Maassen, G. R. Yanchev, A. Haghikia, U. Baveniek, A. Buck, T. Lücke, N. Maassen, D. Tsikas, Simultaneous GC-ECNICI-MS measurement of nitrite, nitrate and creatinine in human urine and plasma in clinical settings, *Journal of Chromatography B* 1047 (2017) 207–214. doi:10.1016/j.jchromb.2016.03.034.

[180] E. Pagliano, M. Onor, E. Pitzalis, Z. Mester, R. Sturgeon, A. D’Ulivo, Quantification of nitrite and nitrate in seawater by triethyloxonium tetrafluoroborate derivatization—headspace SPME GC–MS, *Talanta* 85 (2011) 2511–2516. doi:10.1016/j.talanta.2011.07.098.

[181] B. Campanella, M. Onor, E. Pagliano, Rapid determination of nitrate in vegetables by gas chromatography mass spectrometry, *Analytica Chimica Acta* 980 (2017) 33–40. doi:10.1016/j.aca.2017.04.053.

[182] T. Mitsuhashi, Gas chromatographic determination of trace nitrite after derivatization with ethyl 3-oxobutanoate, *Journal of Chromatography A* 629 (1993) 339–343. doi:10.1016/0021-9673(93)87048-q.

[183] D. Tsikas, A. Bohmer, A. Mitschke, Gas chromatography–mass spectrometry analysis of nitrite in biological fluids without derivatization, *Analytical Chemistry* 82 (2010) 5384–5390. doi:10.1021/ac1008354.

[184] K. Funazo, M. Tanaka, T. Shono, Determination of nitrite at parts-per-billion levels by derivatization and electron capture gas chromatography, *Analytical Chemistry* 52 (1980) 1222–1224. doi:10.1021/ac50058a015.

[185] D. K. Dubey, M. Palit, A. K. Gupta, D. Pardasani, P. Shakya, R. K. Srivastava, Study of electron ionization mass spectra of bis(trimethylsilyl) esters of alkylphosphonic and alkylthiophosphonic acids, *Rapid Communications in Mass Spectrometry* 19 (2005) 1763–1766. doi:10.1002/rcm.1966.

[186] Q. Wang, J. Xie, M. Gu, J. Feng, J. Ruan, Gas chromatographic–mass spectrometric method for quantitation of trimethylsilyl derivatives of nerve agent degradation products in human plasma, using strong anion-exchange solid-phase extraction, *Chromatographia* 62 (2005) 167–173. doi:10.1365/s10337-005-0600-1.

[187] U. V. Saradhi, S. Prabhakar, T. J. Reddy, M. Vairamani, Ion-pair solid-phase extraction and gas chromatography–mass spectrometric determination of acidic hydrolysis products of chemical warfare agents from aqueous samples, *Journal of Chromatography A* 1129 (2006) 9–13. doi:10.1016/j.chroma.2006.06.080.

[188] A. D. Rossé, J. J. Harynuk, Methodology for the derivatization and quantification of dialkyl phosphate esters in petroleum samples, *Analytical Methods* 2 (2010) 1176. doi:10.1039/c0ay00235f.

[189] O. Terzic, Screening of degradation products, impurities and precursors of chemical warfare agents in water and wet or dry organic liquid samples by in-sorbent tube silylation followed by thermal desorption–gas chromatography–mass spectrometry, *Journal of Chromatography A* 1217 (2010) 4987–4995. doi:10.1016/j.chroma.2010.05.042.

[190] R. Subramaniam, C. Åstot, L. Juhlin, C. Nilsson, A. Östlin, Determination of s-2-(n, n-diisopropylaminoethyl)- and s-2-(n, n-diethylaminoethyl) methylphosphonothiolate, nerve agent markers, in water samples using strong anion-exchange disk extraction, in vial trimethylsilylation, and gas chromatogra-

phy-mass spectrometry analysis, *Journal of Chromatography A* 1229 (2012) 86–94. doi:10.1016/j.chroma.2012.01.068.

[191] V. Singh, S. Chinthakindi, A. K. Purohit, D. Pardasani, V. Tak, D. K. Dubey, Single vial sample preparation of markers of nerve agents by dispersive solid-phase extraction using magnetic strong anion exchange resins, *Journal of Chromatography A* 1395 (2015) 48–56. doi:10.1016/j.chroma.2015.03.073.

[192] M. T. Sng, W. F. Ng, In-situ derivatisation of degradation products of chemical warfare agents in water by solid-phase microextraction and gas chromatographic-mass spectrometric analysis, *Journal of Chromatography A* 832 (1999) 173–182. doi:10.1016/s0021-9673(98)00990-x.

[193] M. Kataoka, K. Tsuge, H. Takesako, T. Hamazaki, Y. Seto, Effect of pedological characteristics on aqueous soil extraction recovery and *tert*-butyldimethylsilylation yield for gas chromatography-mass spectrometry of nerve gas hydrolysis products from soils, *Environmental Science & Technology* 35 (2001) 1823–1829. doi:10.1021/es001529z.

[194] M. Noami, M. Kataoka, Y. Seto, Improved *tert*-butyldimethylsilylation gas chromatographic/mass spectrometric detection of nerve gas hydrolysis products from soils by pretreatment of aqueous alkaline extraction and strong anion-exchange solid-phase extraction, *Analytical Chemistry* 74 (2002) 4709–4715. doi:10.1021/ac0202000.

[195] H. S. N. Lee, M. T. Sng, C. Basheer, H. K. Lee, Determination of degradation products of chemical warfare agents in water using hollow fibre-protected liquid-phase microextraction with in-situ derivatisation followed by gas chromatography-mass spectrometry, *Journal of Chromatography A* 1148 (1) (2007) 8–15. doi:10.1016/j.chroma.2007.02.104.

[196] D. D. Richardson, J. A. Caruso, Derivatization of organophosphorus nerve agent degradation products for gas chromatography with ICPMS and TOF-MS detection, *Analytical and Bioanalytical Chemistry* 388 (2007) 809–823. doi:10.1007/s00216-007-1164-8.

[197] M. Kanamori-Kataoka, Y. Seto, Laboratory identification of the nerve gas hydrolysis products alkyl methylphosphonic acids and methylphosphonic acid, by gas chromatography-mass spectrometry after *tert*-butyldimethylsilylation, *Journal of Health Science* 54 (2008) 513–523. doi:10.1248/jhs.54.513.

[198] M. R. Gravett, F. B. Hopkins, M. J. Main, A. J. Self, C. M. Timperley, A. J. Webb, M. J. Baker, Detection of the organophosphorus nerve agent VX and its hydrolysis products in white mustard plants grown in contaminated soil, *Analytical Methods* 5 (2013) 50–53. doi:10.1039/c2ay25883h.

[199] S. Chinthakindi, A. Purohit, V. Singh, V. Tak, D. Dubey, D. Pardasani, Solid supported in situ derivatization extraction of acidic degradation products of nerve agents from aqueous samples, *Journal of Chromatography A* 1359 (2014) 325–329. doi:10.1016/j.chroma.2014.07.046.

[200] C. Hardy, Analysis of alkyl esters of phosphoric acid by gas chromatography, *Journal of Chromatography A* 13 (1964) 372–376. doi:10.1016/s0021-9673(01)95133-7.

[201] L. E. S. John, D. J. Lisk, Determination of hydrolytic metabolites of organophosphorus insecticides in cow urine using an improved thermionic detector, *Journal of Agricultural and Food Chemistry* 16 (1968) 48–49. doi:10.1021/jf60155a031.

[202] C. G. Daughton, D. G. Crosby, R. L. Garnas, D. P. H. Hsieh, Analysis of phosphorus-containing hydrolytic products of organophosphorus insecticides in water, *Journal of Agricultural and Food Chemistry* 24 (1976) 236–241. doi:10.1021/jf60204a015.

[203] Ž. Vasilic, V. Drevenkar, V. Rumenjak, B. Štengl, Z. Fröbe, Urinary excretion of diethylphosphorus metabolites in persons poisoned by quinalphos or chlorpyrifos, *Archives of Environmental Contamination and Toxicology* 22 (1992) 351–357. doi:10.1007/bf00212552.

[204] V. Drevenkar, B. Stengl, Z. Fröbe, Microanalysis of dialkylphosphorus metabolites of organophosphorus pesticides in human blood by capillary gas chromatography and by phosphorus-selective and ion trap detection, *Analytica Chimica Acta* 290 (1994) 277–286. doi:10.1016/0003-2670(94)80114-2.

[205] W. J. Driskell, M. Shih, L. L. Needham, D. B. Barr, Quantitation of organophosphorus nerve agent metabolites in human urine using isotope dilution gas chromatography-tandem mass spectrometry, *Journal of Analytical Toxicology* 26 (2002) 6–10. doi:10.1093/jat/26.1.6.

[206] S. D. Harvey, J. H. Wahl, On-matrix derivatization for dynamic headspace sampling of nonvolatile surface residues, *Journal of Chromatography A* 1256 (2012) 58–66. doi:10.1016/j.chroma.2012.07.095.

[207] W. C. Lin, C. H. Kuei, H. C. Wu, C. C. Yang, H. Y. Chang, Method for the determination of dialkyl phosphates in urine by strong anion exchange disk extraction and in-vial derivatization, *Journal of Analytical Toxicology* 26 (2002) 176–180. doi:10.1093/jat/26.3.176.

[208] F. C. Churchill, D. N. Ku, J. W. Miles, Gas-liquid chromatographic inlet block derivatization of organophosphorus pesticides and related dialkyl phosphorothioates, *Journal of Agricultural and Food Chemistry* 26 (1978) 1108–1112. doi:10.1021/jf60219a015.

[209] R. P. Moody, C. A. Franklin, D. Riedel, N. I. Muir, R. Greenhalgh, A. Hladka, A new GC on-column methylation procedure for analysis of DMTP (O,O-dimethyl phosphorothioate) in urine of workers exposed to fenithrothion, *Journal of Agricultural and Food Chemistry* 33 (1985) 464–467. doi:10.1021/jf600063a034.

[210] J. Tørnes, B. Johnsen, Gas chromatographic determination of methylphosphonic acids by methylation with trimethylphenylammonium hydroxide, *Journal of Chromatography A* 467 (1989) 129–138. doi:10.1016/s0021-9673(01)93957-3.

[211] G. A. Segal, B. A. Tomkins, W. H. Griest, Analysis of methylphosphonic acid, ethyl methylphosphonic acid and isopropyl methylphosphonic acid at low microgram per liter levels in groundwater, *Journal of Chromatography A* 790 (1997) 143–152. doi:10.1016/s0021-9673(97)00747-4.

[212] U. V. Saradhi, S. Prabhakar, T. J. Reddy, M. Murty, Gas chromatographic-mass spectrometric determination of alkylphosphonic acids from aqueous samples by ion-pair solid-phase extraction on activated charcoal and methylation, *Journal of Chromatography A* 1157 (2007) 391–398. doi:10.1016/j.chroma.2007.04.057.

[213] M. T. Shafik, H. F. Enos, Determination of metabolic and hydrolytic products of organophosphorus pesticide chemicals in human blood and urine, *Journal of Agricultural and Food Chemistry* 17 (1969) 1186–1189. doi:10.1021/jf60166a039.

[214] M. T. Shafik, D. Bradway, H. F. Enos, Cleanup procedure for the determination of low levels of alkyl phosphates, thiophosphates, and dithiophosphates in rat and human urine, *Journal of Agricultural and Food Chemistry* 19 (1971) 885–889. doi:10.1021/jf60177a045.

[215] T. Shafik, D. E. Bradway, H. F. Enos, A. R. Yobs, Human exposure to organophosphorus pesticides. modified procedure for the gas-liquid chromatographic analysis of alkyl phosphate metabolites in urine, *Journal of Agricultural and Food Chemistry* 21 (1973) 625–629. doi:10.1021/jf60188a036.

[216] D. Blair, H. R. Roderick, An improved method for the determination of urinary dimethyl phosphate, *Journal of Agricultural and Food Chemistry* 24 (1976) 1221–1223. doi:10.1021/jf60208a001.

[217] E. M. Lores, D. E. Bradway, Extraction and recovery of organophosphorus metabolites from urine using an anion exchange resin, *Journal of Agricultural and Food Chemistry* 25 (1977) 75–79. doi:10.1021/jf60209a040.

[218] C. D. Brokopp, J. L. Wyatt, J. Gabica, Dialkyl phosphates in urine samples from pesticide formulators exposed to disulfoton and phorate, *Bulletin of Environmental Contamination and Toxicology* 26 (1981) 524–529. doi:10.1007/bf01622131.

[219] N. Kupfermann, A. Schmoldt, H. Steinhart, Rapid and sensitive quantitative analysis of alkyl phosphates in urine after organophosphate poisoning, *Journal of Analytical Toxicology* 2800

2809 28 (2004) 242–248. doi:10.1093/jat/28.4.242.

2810 [220] J. R. Nyholm, T. Gustafsson, A. Östin, Structural de-
2811 termination of nerve agent markers using gas chromatog-
2812 raphy mass spectrometry after derivatization with 3-
2813 pyridyldiazomethane, *Journal of Mass Spectrometry* 48 (2013)
2814 813–822. doi:10.1002/jms.3225.

2815 [221] C. G. Daughton, A. M. Cook, M. Alexander, Gas chro-
2816 matographic determination of phosphorus-containing pesticide
2817 metabolites via benzylation, *Analytical Chemistry* 51 (1979)
2818 1949–1953. doi:10.1021/ac50048a014.

2819 [222] D. Y. Takade, J. M. Reynolds, J. H. Nelson, 1-(4-nitrobenzyl)-
2820 3-(4-tolyl)triazene as a derivatizing reagent for the analysis
2821 of urinary dialkyl phosphate metabolites of organophosphorus
2822 pesticides by gas chromatography, *Journal of Agricultural and
2823 Food Chemistry* 27 (1979) 746–753. doi:10.1021/jf60224a003.

2824 [223] D. Pardasani, M. Palit, A. Gupta, P. K. Kanaujia,
2825 K. Sekhar, D. Dubey, Microemulsion mediated in situ derivati-
2826 zation–extraction and gas chromatography–mass spectromet-
2827 ric analysis of alkylphosphonic acids, *Journal of Chromatogra-
2828 phy A* 1108 (2006) 166–175. doi:10.1016/j.chroma.2006.01.044.

2829 [224] D. Pardasani, P. K. Kanaujia, A. Gupta, V. Tak, R. Shrivastava,
2830 D. Dubey, In situ derivatization hollow fiber mediated
2831 liquid phase microextraction of alkylphosphonic acids from
2832 water, *Journal of Chromatography A* 1141 (2007) 151–157.
2833 doi:10.1016/j.chroma.2006.12.010.

2834 [225] R. Bravo, W. J. Driskell, R. D. Whitehead, L. L. Needham,
2835 D. B. Barr, Quantitation of dialkyl phosphate metabolites of
2836 organophosphate pesticides in human urine using GC-MS-MS
2837 with isotopic internal standards, *Journal of Analytical Toxi-
2838 cology* 26 (2002) 245–252. doi:10.1093/jat/26.5.245.

2839 [226] R. Bravo, L. M. Caltabiano, G. Weerasekera, R. D. White-
2840 head, C. Fernandez, L. L. Needham, A. Bradman, D. B.
2841 Barr, Measurement of dialkyl phosphate metabolites of
2842 organophosphorus pesticides in human urine using lyophiliza-
2843 tion with gas chromatography-tandem mass spectrometry and
2844 isotope dilution quantification, *Journal of Exposure Analysis
2845 and Environmental Epidemiology* 14 (2004) 249–259.
2846 doi:10.1038/sj.jea.7500322.

2847 [227] G. K. H. D. Alwis, L. L. Needham, D. B. Barr, Measure-
2848 ment of human urinary organophosphate pesticide metabo-
2849 lites by automated solid-phase extraction, post extraction
2850 derivatization, and gas chromatography–tandem mass spec-
2851 trometry, *Journal of Chromatography B* 843 (2006) 34–41.
2852 doi:10.1016/j.jchromb.2006.05.010.

2853 [228] D. Wang, P. Behniwal, R. Fan, H. S. S. Ip, J. She,
2854 Matrix effects in analysis of dialkyl phosphate metabo-
2855 lites of organophosphate pesticides in urine by gas chro-
2856 matography/tandem mass spectrometer, *Journal of Environ-
2857 mental Science and Health, Part B* 48 (2013) 177–182.
2858 doi:10.1080/03601234.2013.730021.

2859 [229] S. J. Reid, R. R. Watts, A method for the determination of
2860 dialkyl phosphate residues in urine, *Journal of Analytical Toxi-
2861 cology* 5 (1981) 126–132. doi:10.1093/jat/5.3.126.

2862 [230] V. Bardarov, M. Mitewa, High-performance liquid and gas
2863 chromatography of dialkylphosphates, dialkylthiophosphates
2864 and dialkyldithiophosphates as their pentafluorobenzyl deriva-
2865 tives, *Journal of Chromatography A* 462 (1989) 233–241.
2866 doi:10.1016/s0021-9673(00)91350-5.

2867 [231] S.-Å. Fredriksson, L.-G. Hammarström, L. Henriksson,
2868 H.-Å. Lakso, Trace determination of alkyl methylphos-
2869 phonic acids in environmental and biological samples
2870 using gas chromatography/negative-ion chemical ioniza-
2871 tion mass spectrometry and tandem mass spectrometry,
2872 *Journal of Mass Spectrometry* 30 (1995) 1133–1143.
2873 doi:10.1002/jms.1190300810.

2874 [232] A. Miki, H. Tsuchihashi, K. Ueda, M. Yamashita, Gas chro-
2875 matographic determination and gas chromatographic-mass
2876 spectrometric determination of dialkyl phosphates via extract-
2877 ive pentafluorobenzylation using a polymeric phase-transfer
2878 catalyst, *Journal of Chromatography A* 718 (1995) 383–389.
2879 doi:10.1016/0021-9673(95)00684-2.

[233] T. F. Moate, C. Lu, R. A. Fenske, R. M. A. Hahne, D. A.
2880 Kalman, Improved cleanup and determination of dialkyl phos-
2881 phates in the urine of children exposed to organophosphorus
2882 insecticides, *Journal of Analytical Toxicology* 23 (1999) 230–
2883 236. doi:10.1093/jat/23.4.230.

[234] J. Hardt, J. Angerer, Determination of dialkyl phosphates
2884 in human urine using gas chromatography-mass spectrom-
2885 etry, *Journal of Analytical Toxicology* 24 (2000) 678–684.
2886 doi:10.1093/jat/24.8.678.

[235] D. Schenke, Analytical method for the determination of
2887 o, o-diethyl phosphate and o, o-diethyl thiophosphate
2888 in faecal samples, *Chemosphere* 41 (2000) 1313–1320.
2889 doi:10.1016/s0045-6535(00)00020-5.

[236] A. N. Oglobline, H. Elimelakh, B. Tattam, G. Holder,
2890 R. Geyer, G. E. O'Donnell, Negative ion chemical ioniza-
2891 tion GC/MS-MS analysis of dialkylphosphate metabolites of
2892 organophosphate pesticides in urine of non-occupationally
2893 exposed subjects, *The Analyst* 126 (2001) 1037–1041.
2894 doi:10.1039/b102004h.

[237] A. N. Oglobline, G. E. O'Donnell, R. Geyer, G. M. Holder,
2895 B. Tattam, Routine gas chromatographic determination of
2896 dialkylphosphate metabolites in the urine of workers occupa-
2897 tionally exposed to organophosphorus insecticides, *Journal of Analytical
2898 Toxicology* 25 (2001) 153–157. doi:10.1093/jat/25.3.153.

[238] M. Palit, A. Gupta, R. Jain, S. Raza, Determination
2899 of pentafluorobenzyl derivatives of phosphonic and phospho-
2900 thioic acids by gas chromatography–mass spectrom-
2901 etry, *Journal of Chromatography A* 1043 (2004) 275–284.
2902 doi:10.1016/j.chroma.2004.05.038.

[239] F. A. Tarbah, B. Kardel, S. Pier, O. Temme, T. Dal-
2903 drup, Acute poisoning with phosphamidon: determination of
2904 dimethyl phosphate (DMP) as a stable metabolite in a case of
2905 organophosphate insecticide intoxication, *Journal of Analytical
2906 Toxicology* 28 (2004) 198–203. doi:10.1093/jat/28.3.198.

[240] J. Riches, I. Morton, R. W. Read, R. M. Black, The trace
2907 analysis of alkyl alkylphosphonic acids in urine using gas
2908 chromatography-ion trap negative ion tandem mass spec-
2909 trometry, *Journal of Chromatography B* 816 (2005) 251–258.
2910 doi:10.1016/j.jchromb.2004.11.039.

[241] J. Ueyama, I. Saito, M. Kamijima, T. Nakajima, M. Gotoh,
2911 T. Suzuki, E. Shibata, T. Kondo, K. Takagi, K. ichi Miyamoto,
2912 J. Takamatsu, T. Hasegawa, K. Takagi, Simultaneous
2913 determination of urinary dialkylphosphate metabolites of
2914 organophosphorus pesticides using gas chromatography–mass
2915 spectrometry, *Journal of Chromatography B* 832 (2006) 58–66.
2916 doi:10.1016/j.jchromb.2005.12.030.

[242] G. K. H. D. Alwis, L. L. Needham, D. B. Barr, Determi-
2917 nation of dialkyl phosphate metabolites of organophosphorus
2918 pesticides in human urine by automated solid-phase ex-
2919 traction, derivatization, and gas chromatography-mass spec-
2920 trometry, *Journal of Analytical Toxicology* 32 (2008) 721–727.
2921 doi:10.1093/jat/32.9.721.

[243] C. Petchuay, S. Thoumsang, P. Visuthismajarn, B. Vitayav-
2922 rasak, B. Buckley, P. Hore, M. Borjan, M. Robson, Analy-
2923 tical method developed for measurement of dialkylphosphate
2924 metabolites in urine collected from children non-occupationally
2925 exposed to organophosphate pesticides in an agricultural com-
2926 munity in thailand, *Bulletin of Environmental Contamination
2927 and Toxicology* 81 (2008) 401–405. doi:10.1007/s00128-008-
2928 9515-5.

[244] G. K. H. D. Alwis, L. L. Needham, D. B. Barr, Auto-
2929 mated solid phase extraction, on-support derivatization and
2930 isotope dilution-GC/MS method for the detection of urinary
2931 dialkyl phosphates in humans, *Talanta* 77 (3) (2009) 1063–
2932 1067. doi:10.1016/j.talanta.2008.08.007.

[245] M. G. Margariti, A. M. Tsatsakis, Analysis of dialkyl
2933 phosphate metabolites in hair using gas chromatography-
2934 mass spectrometry: A biomarker of chronic exposure to
2935 organophosphate pesticides, *Biomarkers* 14 (2009) 137–147.
2936 doi:10.1080/13547500902792912.

[246] B. K. Schindler, K. Förster, J. Angerer, Quantification of
2937

2951 two urinary metabolites of organophosphorus flame retardants
 2952 by solid-phase extraction and gas chromatography–tandem
 2953 mass spectrometry, *Analytical and Bioanalytical Chemistry*
 2954 395 (2009) 1167–1171. doi:10.1007/s00216-009-3064-6.

2955 [247] B. K. Schindler, K. Förster, J. Angerer, Determination of hu-
 2956 man urinary organophosphate flame retardant metabolites by
 2957 solid-phase extraction and gas chromatography–tandem mass
 2958 spectrometry, *Journal of Chromatography B* 877 (2009) 375–
 2959 381. doi:10.1016/j.jchromb.2008.12.030.

2960 [248] J. Ueyama, M. Kamijima, T. Kondo, K. Takagi, E. Shibata,
 2961 T. Hasegawa, S. Wakusawa, T. Taki, M. Gotoh, I. Saito,
 2962 Revised method for routine determination of urinary dialkyl
 2963 phosphates using gas chromatography–mass spectrom-
 2964 etry, *Journal of Chromatography B* 878 (2010) 1257–1263.
 2965 doi:10.1016/j.jchromb.2010.02.005.

2966 [249] A. Tsatsakis, M. Barbounis, M. Kavalakis, M. Kokkinakis,
 2967 I. Terzi, M. Tzatzarakis, Determination of dialkyl phos-
 2968 phates in human hair for the biomonitoring of exposure to
 2969 organophosphate pesticides, *Journal of Chromatography B* 878
 2970 (2010) 1246–1252. doi:10.1016/j.jchromb.2010.02.021.

2971 [250] M. G. Santos, R. V. Vitor, F. L. Andrade, I. Martins,
 2972 E. C. Figueiredo, Molecularly imprinted solid phase extrac-
 2973 tion of urinary diethyl thiophosphate and diethyl dithiophos-
 2974 phate and their analysis by gas chromatography–mass spec-
 2975 trometry, *Journal of Chromatography B* 909 (2012) 70–76.
 2976 doi:10.1016/j.jchromb.2012.10.015.

2977 [251] J. Ueyama, I. Saito, T. Kondo, T. Taki, A. Kimata, S. Saito,
 2978 Y. Ito, K. Murata, T. Iwata, M. Gotoh, E. Shibata, S. Waku-
 2979 sawa, M. Kamijima, Urinary concentrations of organophosphorus
 2980 insecticide metabolites in Japanese workers, *Chemosphere*
 2981 87 (2012) 1403–1409. doi:10.1016/j.chemosphere.2012.02.048.

2982 [252] A. Kokkinaki, M. Kokkinakis, M. P. Kavalakis, M. N.
 2983 Tzatzarakis, A. K. Alegakis, G. Maravgakis, F. Babat-
 2984 sikou, G. A. Fragiadakis, A. M. Tsatsakis, Biomonitoring
 2985 of dialkylphosphate metabolites (DAPs) in urine
 2986 and hair samples of sprayers and rural residents of
 2987 crete, greece, *Environmental Research* 134 (2014) 181–187.
 2988 doi:10.1016/j.envres.2014.07.012.

2989 [253] Y. Lin, J. Chen, L. Yan, L. Guo, B. Wu, C. Li, J. Feng,
 2990 Q. Liu, J. Xie, Determination of nerve agent metabolites in
 2991 human urine by isotope-dilution gas chromatography–tandem
 2992 mass spectrometry after solid phase supported derivatization,
 2993 *Analytical and Bioanalytical Chemistry* 406 (2014) 5213–5220.
 2994 doi:10.1007/s00216-014-7695-x.

2995 [254] A. C. P. Silvério, S. C. Machado, V. B. Boralli, I. Martins,
 2996 Dialkyl phosphates determination by gas chromatogra-
 2997 phy: Evaluation of a microwave-assisted derivatiza-
 2998 tion, *Journal of Separation Science* 38 (2015) 2664–2669.
 2999 doi:10.1002/jssc.201400997.

3000 [255] R. Subramaniam, C. Åstot, L. Juhlin, C. Nilsson, A. Östin, Di-
 3001 rect derivatization and rapid GC-MS screening of nerve agent
 3002 markers in aqueous samples, *Analytical Chemistry* 82 (17)
 3003 (2010) 7452–7459. doi:10.1021/ac101604n.

3004 [256] R. Subramaniam, A. Östin, C. Nilsson, C. Åstot, Direct
 3005 derivatization and gas chromatography–tandem mass spec-
 3006 trometry identification of nerve agent biomarkers in urine
 3007 samples, *Journal of Chromatography B* 928 (2013) 98–105.
 3008 doi:10.1016/j.jchromb.2013.03.009.

3009 [257] W. H. Griest, T. Martin, Stimulated sequential dehydroxy-
 3010 fluorination: a safe, convenient method for gas chromato-
 3011 graphic analysis of phosphate diesters with possible applica-
 3012 tion to hydrolysates of organophosphorus pesticides and nerve
 3013 gases, *Journal of Chromatography A* 192 (1980) 173–184.
 3014 doi:10.1016/s0021-9673(00)81851-8.

3015 [258] E. A. Nagul, I. D. McKelvie, P. Worsfold, S. D. Kolev, The
 3016 molybdenum blue reaction for the determination of orthophos-
 3017 phate revisited: opening the black box, *Analytica Chimica
 3018 Acta* 890 (2015) 60–82. doi:10.1016/j.aca.2015.07.030.

3019 [259] T. Hashizume, Y. Sasaki, Gas chromatography of sugar
 3020 phosphate, *Analytical Biochemistry* 15 (1966) 346–350.
 3021 doi:10.1016/0003-2697(66)90041-8.

[260] T. Hashizume, Y. Sasaki, Gas chromatographic separation of
 3022 ribonucleotides by means of trimethylsilyl (TMS) derivatives,
 3023 *Analytical Biochemistry* 15 (1966) 199–203. doi:10.1016/0003-
 3024 2697(66)90272-7.

[261] T. Hashizume, Y. Sasaki, Determination of orthophosphate by
 3025 gas chromatography, *Analytical Biochemistry* 21 (1967) 316–
 3026 320. doi:10.1016/0003-2697(67)90196-0.

[262] R. Smillie, B. Grant, R. Cribbes, Determination of phos-
 3027 phate and phosphite in plant material by gas chromatography–
 3028 mass spectrometry and ion chromatography, *Journal of Chro-
 3029 matography A* 455 (1988) 253–261. doi:10.1016/s0021-
 3030 9673(01)82123-3.

[263] V. M. Bierhanzl, R. Čabala, M. Ston, R. Kubinec, A. H. Szabó,
 3031 P. Podolec, Gas chromatography with mass spectrometry anal-
 3032 ysis of phosphoserine, phosphoethanolamine, phosphoglycerol,
 3033 and phosphate, *Journal of Separation Science* 38 (2014) 67–72.
 3034 doi:10.1002/jssc.201400657.

[264] D. Z. Brunengraber, B. J. McCabe, J. Katanik, S. F. Pre-
 3035 vis, Gas chromatography–mass spectrometry assay of the ^{18}O
 3036 enrichment of water as trimethyl phosphate, *Analytical Bio-
 3037 chemistry* 306 (2002) 278–282. doi:10.1006/abio.2002.5720.

[265] W. D. Kumler, J. J. Eiler, The acid strength of mono and
 3038 diesters of phosphoric acid, the *n*-alkyl esters from methyl
 3039 to butyl, the esters of biological importance, and the natural
 3040 guanidine phosphoric acids, *Journal of the American Chemi-
 3041 cal Society* 65 (1943) 2355–2361. doi:10.1021/ja01252a028.

[266] L. D. Freedman, G. O. Doak, The preparation and proper-
 3042 ties of phosphonic acids, *Chemical Reviews* 57 (1957) 479–523.
 3043 doi:10.1021/cr50015a003.

[267] R. M. Black, B. Muir, Derivatisation reactions in the chro-
 3044 matographic analysis of chemical warfare agents and their
 3045 degradation products, *Journal of Chromatography A* 1000
 3046 (2003) 253–281. doi:10.1016/s0021-9673(03)00183-3.

[268] O. Terzic, H. Gregg, P. de Voogt, Identification of chemicals
 3047 relevant to the Chemical Weapons Convention using the novel
 3048 sample-preparation methods and strategies of the Mobile Lab-
 3049 oratory of the Organization for the Prohibition of Chemical
 3050 Weapons, *TrAC Trends in Analytical Chemistry* 65 (2015)
 3051 151–166. doi:10.1016/j.trac.2014.10.012.

[269] N. Picazas-Márquez, M. Sierra, C. Nova, J. M. Moreno,
 3052 N. Aboitiz, G. de Rivas, M. A. Sierra, R. Martínez-
 3053 Álvarez, E. Gómez-Caballero, GC-MS study of mono- and
 3054 bishaloethylphosphonates related to schedule 2.b.04 of the
 3055 chemical weapons convention: the discovery of a new
 3056 intramolecular halogen transfer, *Journal of the Ameri-
 3057 can Society for Mass Spectrometry* 27 (2016) 1510–1519.
 3058 doi:10.1007/s13361-016-1430-0.

[270] D. A. Dzombak, R. S. Ghosh, G. M. Wong-Chong (Eds.),
 3059 Cyanide in Water and Soil: Chemistry, Risk, and Manage-
 3060 ment, 1st Edition, CRC Press, 2005.
 3061 URL <http://amazon.com/o/ASIN/1566706661/>

[271] D. M. Prue, J. E. Martin, A. S. Hume, A critical evalua-
 3062 tion of thiocyanate as a biochemical index of smoking expo-
 3063 sure, *Behavior Therapy* 11 (1980) 368–379. doi:10.1016/s0005-
 3064 7894(80)80053-0.

[272] R. C. Dart (Ed.), *Medical Toxicology* (Dart, Medical Toxicol-
 3065 ogy), 3rd Edition, LWW, 2003.

[273] R. J. Reiffenstein, W. C. Hulbert, S. H. Roth,
 3066 Toxicology of hydrogen sulfide, *Annual Review of
 3067 Pharmacology and Toxicology* 32 (1992) 109–134.
 3068 doi:10.1146/annurev.pa.32.040192.000545.

[274] P. Nagy, Z. Pálinkás, A. Nagy, B. Budai, I. Tóth,
 3069 A. Vasas, Chemical aspects of hydrogen sulfide measure-
 3070 ments in physiological samples, *Biochimica et Biophysica
 3071 Acta (BBA) - General Subjects* 1840 (2014) 876–891.
 3072 doi:10.1016/j.bbagen.2013.05.037.

[275] J. Ma, P. K. Dasgupta, Recent developments in cyanide detec-
 3073 tion: A review, *Analytica Chimica Acta* 673 (2010) 117–125.
 3074 doi:10.1016/j.aca.2010.05.042.

[276] M. Valdés, M. Díaz-García, Determination of thiocyanate
 3075 within physiological fluids and environmental samples: Cur-
 3076

3093 rent practice and future trends, *Critical Reviews in Analytical*
 3094 Chemistry

3095 [277] T. Ubuka, Assay methods and biological roles of labile sulfur
 3096 in animal tissues, *Journal of Chromatography B* 781 (2002)
 3097 227–249. doi:10.1016/s1570-0232(02)00623-2.

3098 [278] G. Drochioiu, K. Popa, D. Humelnicu, M. Murariu, I. Sandu,
 3099 A. Cecal, Comparison of various sensitive and selective
 3100 spectrophotometric assays of environmental cyanide, *Toxicological & Environmental Chemistry* 90 (2008) 221–235.
 3101 doi:10.1080/02772240701419420.

3102 [279] A. R. Pettigrew, G. S. Fell, Simplified colorimetric determination
 3103 of thiocyanate in biological fluids, and its application to
 3104 investigation of the toxic amblyopias, *Clinical Chemistry* 18
 3105 (1972) 996–1000.

3106 [280] N. Gilboa-Garber, Direct spectrophotometric determination
 3107 of inorganic sulfide in biological materials and in other complex
 3108 mixtures, *Analytical Biochemistry* 43 (1971) 129–133.
 3109 doi:10.1016/0003-2697(71)90116-3.

3110 [281] I. Ciglenečki, B. Čosović, Electrochemical study of sulfur
 3111 species in seawater and marine phytoplankton cultures, *Marine
 3112 Chemistry* 52 (1996) 87–97. doi:10.1016/0304-4203(95)00080-1.

3113 [282] P. Haddad, A. Heckenberg, Determination of inorganic anions
 3114 by high-performance liquid chromatography, *Journal of Chromatography A* 300 (1984) 357–394. doi:10.1016/s0021-9673(01)87590-7.

3115 [283] B. López-Ruiz, Advances in the determination of inorganic
 3116 anions by ion chromatography, *Journal of Chromatography A* 881 (2000) 607–627. doi:10.1016/s0021-9673(00)00244-2.

3117 [284] D. Kaniansky, M. Masár, J. Marák, R. Bodor, Capillary elec-
 3118 trophoresis of inorganic anions, *Journal of Chromatography A* 834 (1999) 133–178. doi:10.1016/s0021-9673(98)00789-4.

3119 [285] R. E. Isbell, Determination of hydrogen cyanide and cyanogen
 3120 by gas chromatography, *Analytical Chemistry* 35 (1963) 255–
 3121 256. doi:10.1021/ac60195a039.

3122 [286] R. W. Darr, T. L. Capson, F. D. Hileman, Determination of hy-
 3123 drogen cyanide in blood using gas chromatography with alkali
 3124 thermionic detection, *Analytical Chemistry* 52 (1980) 1379–
 3125 1381. doi:10.1021/ac50058a058.

3126 [287] F. McAuley, D. S. Reive, Rapid quantitation of cyanide in
 3127 blood by gas chromatography, *Journal of Analytical Toxicology* 7 (1983) 213–215. doi:10.1093/jat/7.5.213.

3128 [288] A. Ishii, H. Seno, K. Watanabe-Suzuki, O. Suzuki, T. Ku-
 3129 mazawa, Determination of cyanide in whole blood by capillary
 3130 gas chromatography with cryogenic oven trapping, *Analytical
 3131 Chemistry* 70 (1998) 4873–4876. doi:10.1021/ac980498b.

3132 [289] Y. Seto, N. Tsunoda, H. Ohta, T. Shinohara, Determina-
 3133 tion of blood cyanide by headspace gas chromatography with
 3134 nitrogen-phosphorus detection and using a megabore capil-
 3135 lary column, *Analytica Chimica Acta* 276 (1993) 247–259.
 3136 doi:10.1016/0003-2670(93)80391-w.

3137 [290] Z. L. Cardeal, D. Pradeau, M. Hamon, Determination of
 3138 HCN by headspace gas chromatography using an improved
 3139 method of standardisation, *Chromatographia* 37 (1993) 613–
 3140 617. doi:10.1007/bf02274111.

3141 [291] Z. L. Cardeal, J. P. Gallet, A. Astier, D. Pradeau, Cyanide
 3142 assay: Statistical comparison of a new gas chromatographic
 3143 calibration method versus the classical spectrophotometric
 3144 method, *Journal of Analytical Toxicology* 19 (1995) 31–34.
 3145 doi:10.1093/jat/19.1.31.

3146 [292] K. Takekawa, M. Oya, A. Kido, O. Suzuki, Analysis of cyanide
 3147 in blood by headspace solid-phase microextraction (SPME)
 3148 and capillary gas chromatography, *Chromatographia* 47 (1998)
 3149 209–214. doi:10.1007/bf02466583.

3150 [293] K. Tsuge, M. Kataoka, Y. Seto, Cyanide and thiocyanate lev-
 3151 els in blood and saliva of healthy adult volunteers, *Journal of
 3152 Health and Science* 46 (2000) 343–350. doi:10.1248/jhs.46.343.

3153 [294] A. M. Calafat, S. B. Stanfill, Rapid quantitation of cyanide
 3154 in whole blood by automated headspace gas chromatogra-
 3155 phy, *Journal of Chromatography B* 772 (2002) 131–137.
 3156 doi:10.1016/s1570-0232(02)00067-3.

3157 [295] K. E. Murphy, Determination of cyanide in blood by
 3158 isotope-dilution gas chromatography-mass spec-
 3159 trometry, *Clinical Chemistry* 52 (2006) 458–467.
 3160 doi:10.1373/clinchem.2005.061002.

3161 [296] P. A. Smith, M. V. Sheely, T. A. Kluchinsky, Solid phase
 3162 microextraction with analysis by gas chromatography to
 3163 determine short term hydrogen cyanide concentrations in
 3164 a field setting, *Journal of Separation Science* 25 (2002)
 3165 917–921. doi:10.1002/1615-9314(20021001)25:14;917::aid-
 3166 jssc917;3.0.co;2-f.

3167 [297] G. Frison, F. Zancanaro, D. Favretto, S. D. Ferrara, An im-
 3168 proved method for cyanide determination in blood using solid-
 3169 phase microextraction and gas chromatography/mass spec-
 3170 trometry, *Rapid Communications in Mass Spectrometry* 20
 3171 (2006) 2932–2938. doi:10.1002/rcm.2689.

3172 [298] P. Boadas-Vaello, E. Jover, J. Llorens, J. M. Bay-
 3173 ona, Determination of cyanide and volatile alkyl nitriles in
 3174 whole blood by headspace solid-phase microextraction
 3175 and gas chromatography with nitrogen phosphorus detec-
 3176 tion, *Journal of Chromatography B* 870 (2008) 17–21.
 3177 doi:10.1016/j.jchromb.2008.05.031.

3178 [299] P. Dumas, G. Gingras, A. LeBlanc, Isotope dilution-mass spec-
 3179 trometry determination of blood cyanide by headspace gas
 3180 chromatography, *Journal of Analytical Toxicology* 29 (2005)
 3181 71–75. doi:10.1093/jat/29.1.71.

3182 [300] V. Gambaro, S. Arnoldi, E. Casagni, L. Dell'Acqua, C. Pec-
 3183 oraro, R. Froldi, Blood cyanide determination in two cases of
 3184 fatal intoxication: Comparison between headspace gas chro-
 3185 matography and a spectrophotometric method, *Journal of
 3186 Forensic Sciences* 52 (2007) 1401–1404. doi:10.1111/j.1556-
 3187 4029.2007.00570.x.

3188 [301] Y. Seto, Oxidative conversion of thiocyanate to cyanide
 3189 by oxyhemoglobin during acid denaturation, *Archives
 3190 of Biochemistry and Biophysics* 321 (1995) 245–254.
 3191 doi:10.1006/abbi.1995.1392.

3192 [302] L.-L. Løbger, H. W. Petersen, J. E. T. Andersen,
 3193 Analysis of cyanide in blood by headspace-isotope-
 3194 dilution-GC-MS, *Analytical Letters* 41 (2008) 2564–2586.
 3195 doi:10.1080/00032710802363248.

3196 [303] B. Meyer, K. Ward, K. Koshlap, L. Peter, Second dissociation
 3197 constant of hydrogen sulfide, *Inorganic Chemistry* 22 (1983)
 3198 2345–2346. doi:10.1021/ic00158a027.

3199 [304] S. Licht, J. Manassen, The second dissociation constant of
 3200 H_2S , *Journal of The Electrochemical Society* 134 (1987) 918.
 3201 doi:10.1149/1.2100595.

3202 [305] H. L. Loy, D. M. Himmelblau, The first ionization constant of
 3203 hydrogen sulfide in water, *The Journal of Physical Chemistry*
 3204 65 (1961) 264–267. doi:10.1021/j100820a019.

3205 [306] F. Lestremau, V. Desauziers, J.-C. Roux, J.-L. Fanlo, Devel-
 3206 opment of a quantification method for the analysis of mal-
 3207 odorous sulphur compounds in gaseous industrial effluents by
 3208 solid-phase microextraction and gas chromatography-pulsed
 3209 flame photometric detection, *Journal of Chromatography A* 999 (2003) 71–80. doi:10.1016/s0021-9673(03)00328-5.

3210 [307] X. Lu, C. Fan, J. Shang, J. Deng, H. Yin, Headspace
 3211 solid-phase microextraction for the determination of volatile
 3212 sulfur compounds in odorous hyper-eutrophic freshwater
 3213 lakes using gas chromatography with flame photometric
 3214 detection, *Microchemical Journal* 104 (2012) 26–32.
 3215 doi:10.1016/j.microc.2012.04.001.

3216 [308] M. Mestres, M. Martí, O. Bustó, J. Guasch, Simultaneous
 3217 analysis of thiols, sulphides and disulphides in wine aroma
 3218 by headspace solid-phase microextraction-gas chromatogra-
 3219 phy, *Journal of Chromatography A* 849 (1999) 293–297.
 3220 doi:10.1016/s0021-9673(99)00538-5.

3221 [309] M. Mestres, O. Bustó, J. Guasch, Analysis of organic sulfur
 3222 compounds in wine aroma, *Journal of Chromatography A* 881
 3223 (2000) 569–581. doi:10.1016/s0021-9673(00)00220-x.

3224 [310] T. Ramstad, A. H. Bates, T. J. Yellig, S. J. Borchert, K. A.
 3225 Mills, Analysis of hydrogen sulfide gas from a pharmaceutical
 3226 drug formulation by cryofocused headspace gas chromatogra-
 3227 phy, *Journal of Chromatography A* 849 (1999) 293–297.

3228 [311] M. Mestres, O. Bustó, J. Guasch, Analysis of organic sulfur
 3229 compounds in wine aroma, *Journal of Chromatography A* 881
 3230 (2000) 569–581. doi:10.1016/s0021-9673(00)00220-x.

3231 [312] T. Ramstad, A. H. Bates, T. J. Yellig, S. J. Borchert, K. A.
 3232 Mills, Analysis of hydrogen sulfide gas from a pharmaceutical
 3233 drug formulation by cryofocused headspace gas chromatogra-
 3234 phy, *Journal of Chromatography A* 849 (1999) 293–297.

3235 phy, *The Analyst* 120 (1995) 2775. doi:10.1039/an9952002775. 3306

3236 [311] P.-M. Sarradin, J.-C. Caprais, Analysis of dissolved gases by 3307
3237 headspace sampling gas chromatography with column and detector 3308
3238 switching: preliminary results, *Analytical Communications* 33 (1996) 371. doi:10.1039/ac9963300371. 3309

3239 [312] V. Varlet, N. Giuliani, C. Palmiere, G. Maujean, M. Augs- 3310
3240 burger, Hydrogen sulfide measurement by headspace-gas 3311
3241 chromatography-mass spectrometry (HS-GC-MS): Application 3312
3242 to gaseous samples and gas dissolved in muscle, *Journal of 3313
3243 Analytical Toxicology* 39 (2014) 52–57. doi:10.1093/jat/bku114. 3314

3244 [313] E. Borrás, L. A. Tortajada-Genaro, A. Muñoz, Determination 3315
3245 of reduced sulfur compounds in air samples for the monitoring 3316
3246 of malodor caused by landfills, *Talanta* 148 (2016) 472–477. 3317
3247 doi:10.1016/j.talanta.2015.11.021. 3318

3248 [314] J. Radford-Knoery, G. A. Cutter, Determination of carbonyl 3319
3249 sulfide and hydrogen sulfide species in natural waters using 3320
3250 specialized collection procedures and gas chromatography with 3321
3251 flame photometric detection, *Analytical Chemistry* 65 (1993) 3322
3252 976–982. doi:10.1021/ac00056a005. 3323

3253 [315] J. C. Valentour, V. Aggarwal, I. Sunshine, Sensitive gas 3324
3254 chromatographic determination of cyanide, *Analytical Chemistry* 46 (1974) 3325
3255 924–925. doi:10.1021/ac60343a048. 3326

3256 [316] J. Xu, H. Tong, X. Yan, S. Du, Z. Yao, S. Liu, Sensitive 3327
3257 determination of cyanide in cigarette smoke by capillary 3328
3258 GC with a MicroECD, *Chromatographia* 64 (2006) 609–612. 3329
3259 doi:10.1365/s10337-006-0070-0. 3330

3260 [317] L. Thomson, R. Anderson, Determination of cyanide and 3331
3261 thiocyanate in biological fluids by gas chromatography-mass 3332
3262 spectrometry, *Journal of Chromatography A* 188 (1980) 357–362. 3333
3263 doi:10.1016/s0021-9673(00)81258-3. 3334

3264 [318] S. Felby, Determination of cyanide in blood by reaction 3335
3265 headspace gas chromatography, *Forensic Science, Medicine, and 3336
3266 Pathology* 5 (2008) 39–43. doi:10.1007/s12024-008-9069-1. 3337

3267 [319] C. Maseda, K. Matsubara, H. Shiono, Improved gas 3338
3268 chromatography with electron-capture detection using a reaction 3339
3269 pre-column for the determination of blood cyanide: A higher 3340
3270 content in the left ventricle of fire victims, *Journal of 3341
3271 Chromatography B: Biomedical Sciences and Applications* 490 3342
3272 (1989) 319–327. doi:10.1016/s0378-4347(00)82790-5. 3343

3273 [320] M. Odoul, B. Fouillet, B. Nouri, R. Chambon, P. Chambon, 3344
3274 Specific determination of cyanide in blood by headspace gas 3345
3275 chromatography, *Journal of Analytical Toxicology* 18 (1994) 3346
3276 205–207. doi:10.1093/jat/18.4.205. 3347

3277 [321] H. Abdolmohammad-Zadeh, H. Vasli, Monitoring of 3348
3278 thiocyanate as a biomarker in saliva and serum samples by a 3349
3279 combination of solid-phase extraction based on a layered double 3350
3280 hydroxide nano-sorbent and gas chromatography, *Analytical 3351
3281 Methods* (11) (2014) 3661. doi:10.1039/c4ay00347k. 3352

3282 [322] T. Chikamoto, T. Maitani, Gas chromatographic determination 3353
3283 of thiocyanate ion in biological fluids using immobilized 3354
3284 phase-transfer catalyst for derivatization, *Analytical Sciences* 2 (1986) 3355
3285 161–164. doi:10.2116/analsci.2.161. 3356

3286 [323] I. Kristiana, A. Heitz, C. Joll, A. Sathasivan, Analysis 3357
3287 of polysulfides in drinking water distribution systems using 3358
3288 headspace solid-phase microextraction and gas chromatogra- 3359
3289 phy-mass spectrometry, *Journal of Chromatography A* 1217 3360
3290 (2010) 5995–6001. doi:10.1016/j.chroma.2010.07.051. 3361

3291 [324] S. Kage, K. Takekawa, K. Kurosaki, T. Imamura, K. Kudo, 3362
3292 The usefulness of thiosulfate as an indicator of hydrogen sulfide 3363
3293 poisoning: three cases, *International Journal of Legal Medicine* 110 (1997) 3364
3294 220–222. doi:10.1007/s004140050071. 3365

3295 [325] S. Kage, T. Nagata, K. Kudo, Determination of polysul- 3366
3296 phides in blood by gas chromatography and gas chromatog- 3367
3297 raphy-mass spectrometry, *Journal of Chromatography B: 3368
3298 Biomedical Sciences and Applications* 564 (1991) 163–169. 3369
3299 doi:10.1016/0378-4347(91)80078-q. 3370

3300 [326] R. Hyšpler, A. Tichá, M. Indrová, Z. Zadák, L. Hyšplerová, 3371
3301 J. Gasparič, J. Churáček, A simple, optimized method for 3372
3302 the determination of sulphide in whole blood by GC-MS 3373
3303 as a marker of bowel fermentation processes, *Journal of 3374
3304* 3375

3305

3235 Chromatography B 770 (2002) 255–259. doi:10.1016/s1570- 3306
3236 0232(01)00632-8. 3307

3237 [327] B. D. Paul, M. L. Smith, Cyanide and thiocyanate 3308
3238 in human saliva by gas chromatography-mass spectrometry 3309
3239, *Journal of Analytical Toxicology* 30 (2006) 511–515. 3310
3240 doi:10.1093/jat/30.8.511. 3311

3241 [328] R. K. Bhandari, R. P. Oda, S. L. Youso, I. Petrikovics, V. S. 3312
3242 Bebarta, G. A. Rockwood, B. A. Logue, Simultaneous determi- 3313
3243 nation of cyanide and thiocyanate in plasma by chemical ion- 3314
3244 ization gas chromatography mass-spectrometry (CI-GC-MS), 3315
3245 Analytical and Bioanalytical Chemistry 404 (2012) 2287–2294. 3316
3246 doi:10.1007/s00216-012-6360-5. 3317

3247 [329] J. S. Toraño, H. J. M. van Kan, Simultaneous determi- 3318
3248 nation of the tobacco smoke uptake parameters nicotine, 3319
3249 cotinine and thiocyanate in urine, saliva and hair, using 3320
3250 gas chromatography-mass spectrometry for characterisation 3321
3251 of smoking status of recently exposed subjects, *The Analyst* 128 3322
3252 (2003) 838–843. doi:10.1039/b304051h. 3323

3253 [330] S. L. Youso, G. A. Rockwood, J. P. Lee, B. A. 3324
3254 Logue, Determination of cyanide exposure by gas 3325
3255 chromatography-mass spectrometry analysis of cyanide-exposed 3326
3256 plasma proteins, *Analytica Chimica Acta* 677 (2010) 24–28. 3327
3257 doi:10.1016/j.aca.2010.01.028. 3328

3258 [331] D. D. Mazza, M. G. Reinecke, Reactions of .alpha., .beta.- 3329
3259 unsaturated ketones with hydrogen sulfide. .gamma.-oxo sul- 3330
3260 fides or tetrahydrothiopyranols?, *The Journal of Organic 3331
3261 Chemistry* 46 (1981) 128–134. doi:10.1021/jo00314a028. 3332

3262 [332] C. Salgado-Petinal, R. Alzaga, C. García-Jares, M. Llompart, 3333
3263 J. M. Bayona, Low part per trillion determination of reactive 3334
3264 alkanethiols in wastewater by in situ derivatization-solid-phase 3335
3265 microextraction followed by GC/MS, *Analytical Chemistry* 77 3336
3266 (2005) 6012–6018. doi:10.1021/ac050685r. 3337

3267 [333] J.-X. Li, P. Schieberle, M. Steinhaus, Development of sta- 3338
3268 ble isotope dilution assays for the quantitation of the food 3339
3269 odorants hydrogen sulphide, methanethiol, ethanethiol, and 3340
3270 propane-1-thiol and application to durian (*durio zibethinus l.*) 3341
3271 pulp, *European Food Research and Technology* 243 (2016) 69– 3342
3272 79. doi:10.1007/s00217-016-2723-z. 3343

3273 [334] T. Takata, D. Saeki, Y. Makita, N. Yamada, N. Kihara, 3344
3274 Aromatic hydrocarbon-catalyzed direct reaction of sulfur and 3345
3275 sodium in a heterogeneous system: selective and facile synthe- 3346
3276 sis of sodium monosulfide and disulfide, *Inorganic Chemistry* 42 (2003) 3347
3277 3712–3714. doi:10.1021/ic034084z. 3348

3278 [335] K. Funazo, K. Kusano, M. Tanaka, T. Shono, Determination 3349
3279 of cyanide ion by derivatization-gas chromatography, *Analytical 3350
3280 Letters* 13 (1980) 751–757. doi:10.1080/00032718008077996. 3351

3281 [336] G. Nota, C. Improta, V. R. Miraglia, Determination of 3352
3282 cyanides and thiocyanates in water as cyanogen bromide by 3353
3283 headspace gas chromatography, *Journal of Chromatography A* 242 (1982) 3354
3284 359–363. doi:10.1016/s0021-9673(00)81714-8. 3355

3285 [337] G. Nota, C. Improta, U. Papale, C. Ferretti, Determination 3356
3286 of cyanide, as cyanohydrin, in water by gas chromatog- 3357
3287 raphy, *Journal of Chromatography A* 262 (1983) 360–363. 3358
3288 doi:10.1016/s0021-9673(01)88120-6. 3359

3289 [338] G. Liu, J. Liu, K. Hara, Y. Wang, Y. Yu, L. Gao, L. Li, 3360
3290 Rapid determination of cyanide in human plasma and urine by 3361
3291 gas chromatography-mass spectrometry with two-step deriva- 3362
3292 tization, *Journal of Chromatography B* 877 (2009) 3054–3058. 3363
3293 doi:10.1016/j.jchromb.2009.07.029. 3364

3294 [339] H.-I. Kang, H.-S. Shin, Ultra-sensitive determina- 3365
3295 tion of cyanide in surface water by gas chromatogra- 3366
3296 phy-tandem mass spectrometry after derivatization with 2-(3367
3297 dimethylamino)ethanethiol, *Analytica Chimica Acta* 852 (2014) 168–173. doi:10.1016/j.aca.2014.09.036. 3368

3298 [340] K. A. Francesconi, D. Kuehnelt, Determination of arsenic 3369
3299 species: A critical review of methods and applications, 2000– 3370
3300 2003, *The Analyst* 129 (2004) 373–395. doi:10.1039/b401321m. 3371

3301 [341] M. Leermakers, W. Baeyens, M. D. Gieter, B. Smedts, 3372
3302 C. Meert, H. D. Bisschop, R. Morabito, P. Quevauviller, Toxic 3373
3303 arsenic compounds in environmental samples: Speciation and 3374
3304 validation, *TrAC Trends in Analytical Chemistry* 25 (2006) 3375
3305

3377 1–10. doi:10.1016/j.trac.2005.06.004.

3378 [342] M. Popp, S. Hann, G. Koellensperger, Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry - a review, *Analytica Chimica Acta* 668 (2010) 114–129. doi:10.1016/j.aca.2010.04.036.

3383 [343] I. Komorowicz, D. Barałkiewicz, Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry - last decade review, *Talanta* 84 (2011) 247–261. doi:10.1016/j.talanta.2010.10.065.

3388 [344] J. Ma, M. K. Sengupta, D. Yuan, P. K. Dasgupta, Speciation and detection of arsenic in aqueous samples: A review of recent progress in non-atomic spectrometric methods, *Analytica Chimica Acta* 831 (2014) 1–23. doi:10.1016/j.aca.2014.04.029.

3393 [345] Y. Wang, S. Wang, P. Xu, C. Liu, M. Liu, Y. Wang, C. Wang, C. Zhang, Y. Ge, Review of arsenic speciation, toxicity and metabolism in microalgae, *Reviews in Environmental Science and Bio/Technology* 14 (2015) 427–451. doi:10.1007/s11157-015-9371-9.

3397 [346] A. Dhillon, M. Nair, D. Kumar, Analytical methods for sensing of health-hazardous arsenic from biotic and abiotic natural resources, *Analytical Methods* 7 (2015) 10088–10108. doi:10.1039/c5ay02430g.

3401 [347] D. Wu, S. Sun, Speciation analysis of as, sb and se, *Trends in Environmental Analytical Chemistry* 11 (2016) 9–22. doi:10.1016/j.teac.2016.05.001.

3404 [348] L.-M. Zeng, H.-Y. Wang, Y.-L. Guo, Fast quantitative analysis of boric acid by gas chromatography-mass spectrometry coupled with a simple and selective derivatization reaction using triethanolamine, *Journal of the American Society for Mass Spectrometry* 21 (2010) 482–485. doi:10.1016/j.jasms.2009.12.003.

3410 [349] H. Steinberg, D. L. Hunter, Preparation and rate of hydrolysis of boric acid esters, *Industrial & Engineering Chemistry* 49 (1957) 174–181. doi:10.1021/ie50566a023.

3413 [350] WHO, Guidelines for Drinking-Water Quality. Vol. 2. Health Criteria and other Supporting Information.; World Health Organization: Geneva, Switzerland.

3416 [351] A. Dhillon, M. Nair, D. Kumar, Analytical methods for determination and sensing of fluoride in biotic and abiotic sources: a review, *Analytical Methods* 8 (2016) 5338–5352. doi:10.1039/c6ay01534d.

3420 [352] R. Bock, H. J. Semmler, Abtrennung und bestimmung des fluorid-ions mit hilfe siliciumorganischer verbindungen, *Fresenius' Zeitschrift für Analytische Chemie* 230 (1967) 161–184. doi:10.1007/bf00527830.

3424 [353] R. Bock, S. Strecker, Abtrennung und gas-chromatographische bestimmung von fluoridspuren, *Fresenius' Zeitschrift für Analytische Chemie* 266 (1973) 110–116. doi:10.1007/bf00424067.

3427 [354] K. Ranfft, Zur gas-chromatographischen bestimmung des fluors, *Fresenius' Zeitschrift für Analytische Chemie* 269 (1974) 18–21. doi:10.1007/bf00423933.

3430 [355] G. Yamamoto, K. Yoshitake, T. Kimura, T. Ando, Gas chromatographic determination of traces of fluoride with several alkylsilane extractants, *Analytica Chimica Acta* 222 (1989) 121–126. doi:10.1016/s0003-2670(00)81885-1.

3433 [356] J. Belisle, D. F. Hagen, Method for the determination of the total fluorine content of whole blood, serum/plasma, and other biological samples, *Analytical Biochemistry* 87 (1978) 545–555. doi:10.1016/0003-2697(78)90704-2.

3436 [357] D.-M. Hui, M. Minami, Monitoring of fluorine in urine samples of patients involved in the tokyo sarin disaster, in connection with the detection of other decomposition products of sarin and the by-products generated during sarin synthesis, *Clinica Chimica Acta* 302 (2000) 171–188. doi:10.1016/s0009-8981(00)00364-8.

3439 [358] W. Tashkov, I. Benchev, N. Rizov, A. Kolarska, Fluoride determination in fluorinated milk by headspace gas chromatography, *Chromatographia* 29 (1990) 544–546. doi:10.1007/bf02261219.

359 [359] G. Wejnerowska, A. Karczmarek, J. Gaca, Determination of fluoride in toothpaste using headspace solid-phase microextraction and gas chromatography–flame ionization detection, *Journal of Chromatography A* 1150 (2007) 173–177. doi:10.1016/j.chroma.2006.10.030.

360 [360] M. Kaykhaii, M. H. Ghalehno, Rapid and sensitive determination of fluoride in toothpaste and water samples using headspace single drop microextraction-gas chromatography, *Analytical Methods* 5 (2013) 5622. doi:10.1039/c3ay41004h.

361 [361] S. Kage, K. Kudo, N. Nishida, H. Ikeda, N. Yoshioka, N. Ikeda, Determination of fluoride in human whole blood and urine by gas chromatography-mass spectrometry, *Forensic Toxicology* 26 (1) (2008) 23–26. doi:10.1007/s11419-008-0043-0.

362 [362] S.-M. Kwon, H.-S. Shin, Sensitive determination of fluoride in biological samples by gas chromatography–mass spectrometry after derivatization with 2-(bromomethyl)naphthalene, *Analytica Chimica Acta* 852 (2014) 162–167. doi:10.1016/j.aca.2014.09.035.

363 [363] S.-M. Kwon, H.-S. Shin, Simple determination of fluoride in biological samples by headspace solid-phase microextraction and gas chromatography–tandem mass spectrometry, *Journal of Chromatography A* 1407 (2015) 216–221. doi:10.1016/j.chroma.2015.06.066.

364 [364] R. M. Maiorino, A. J. Gandolfi, I. G. Sipes, Gas-chromatographic method for the halothane metabolites, trifluoroacetic acid and bromide, in biological fluids, *Journal of Analytical Toxicology* 4 (1980) 250–254. doi:10.1093/jat/4.5.250.

365 [365] B. A. Manion, B. E. Holbein, M. F. Marcone, K. Seetharaman, A new method for quantifying iodine in a starch–iodine matrix, *Carbohydrate Research* 345 (2010) 2698–2704. doi:10.1016/j.carres.2010.09.025.

366 [366] B. Manion, M. Ye, B. E. Holbein, K. Seetharaman, Quantification of total iodine in intact granular starches of different botanical origin exposed to iodine vapor at various water activities, *Carbohydrate Research* 346 (2011) 2482–2490. doi:10.1016/j.carres.2011.08.017.

367 [367] H. A. Rüssel, Determination of halide ions by gas chromatography, *Angewandte Chemie International Edition in English* 9 (1970) 374–375. doi:10.1002/anie.197003742.

368 [368] R. Belcher, J. Majer, J. Rodriguez-vazquez, W. Stephen, P. Uden, A gas chromatographic method for the determination of low concentrations of the chloride ion, *Analytica Chimica Acta* 57 (1971) 73–80. doi:10.1016/s0003-2670(01)80131-8.

369 [369] R. Belcher, J. A. Rodriguez-Vazquez, W. I. Stephen, P. C. Uden, Thermogravimetric and gas chromatographic characteristics of some phenylmercury (II) compounds, *Chromatographia* 9 (1976) 201–204. doi:10.1007/bf02276325.

370 [370] A. Sarafraz-Yazdi, M. Khuhawar, P. Uden, Gas chromatography of chloride and bromide as phenylboronic acid/mercuric nitrate derivatives with microwave induced plasma atomic emission detection, *Journal of Chromatography A* 594 (1992) 395–399. doi:10.1016/0021-9673(92)80355-x.

371 [371] M. A. Arain, M. Y. Khuhawar, M. I. Bhanger, Gas chromatographic analysis of chloride, bromide, and iodide as trifluoromethylmercury(II) nitrate derivatives, *Journal of Separation Science* 25 (2002) 462–465. doi:10.1002/1615-9314(20020501)25:7;462::aid-jssc462i3.0.co;2-3.

372 [372] A. W. Archer, A gas-chromatographic method for the determination of increased bromide concentrations in blood, *The Analyst* 97 (1972) 428. doi:10.1039/an9729700428.

373 [373] S. Mishra, S. Gosain, A. Jain, K. K. Verma, Determination of bromide in fumigated and natural samples by conversion into bromophenols followed by gas chromatography–mass spectrometry, *Analytica Chimica Acta* 439 (2001) 115–123. doi:10.1016/s0003-2670(01)01027-3.

374 [374] G. St, The gas-liquid chromatographic determination of inorganic iodine, iodide and tightly bound iodine in milk, *Journal of Chromatography A* 100 (1974) 43–48. doi:10.1016/s0021-9673(00)86038-0.

375 [375] L. Maros, M. Kaldy, S. Igaz, Simultaneous determination of bromide and iodide as acetone derivatives by gas chro-

3519 matography and electron capture detection in natural waters
3520 and biological fluids, *Analytical Chemistry* 61 (1989) 733–735.
3521 doi:10.1021/ac00182a018.

3522 [376] P. J. Nyman, B. J. Canas, F. L. Joe, G. W. Diachenko, Screen-
3523 ing method for the gas chromatographic/mass spectrometric
3524 determination of microgram/litre levels of bromate in bottled
3525 water, *Food Additives and Contaminants* 13 (1996) 623–631.
3526 doi:10.1080/02652039609374447.

3527 [377] M. L. Magnuson, Determination of bromate at parts-per-
3528 trillion levels by gas chromatography–mass spectrometry with
3529 negative chemical ionization, *Analytica Chimica Acta* 377
3530 (1998) 53–60. doi:10.1016/s0003-2670(98)00558-3.

3531 [378] H.-S. Shin, Y.-S. Oh-Shin, J.-H. Kim, J.-K. Ryu, Trace
3532 level determination of iodide, iodine and iodate by gas
3533 chromatography-mass spectrometry, *Journal of Chromatogra-
3534 phy A* 732 (1996) 327–333. doi:10.1016/0021-9673(95)01281-8.

3535 [379] S. Mishra, V. Singh, A. Jain, K. K. Verma, Determination of
3536 iodide by derivatization to 4-iodo-n, n-dimethylaniline and gas
3537 chromatography–mass spectrometry, *The Analyst* 125 (2000)
3538 459–464. doi:10.1039/a908363d.

3539 [380] P. Das, M. Gupta, A. Jain, K. Verma, Single drop microex-
3540 traction or solid phase microextraction–gas chromatography–mass
3541 spectrometry for the determination of iodine in pharmaceuti-
3542 cals, iodized salt, milk powder and vegetables involving conver-
3543 sion into 4-iodo-n, n-dimethylaniline, *Journal of Chromatog-
3544 raphy A* 1023 (2004) 33–39. doi:10.1016/j.chroma.2003.09.056.

3545 [381] S. Zhang, K. A. Schwehr, Y.-F. Ho, C. Xu, K. A. Roberts,
3546 D. I. Kaplan, R. Brinkmeyer, C. M. Yeager, P. H. Santschi,
3547 A novel approach for the simultaneous determination of io-
3548 dide, iodate and organo-iodide for ^{127}I and ^{129}I in environ-
3549 mental samples using gas chromatography-mass spectrometry,
3550 *Environmental Science & Technology* 44 (2010) 9042–9048.
3551 doi:10.1021/es102047y.

3552 [382] K. Reddy-Noone, A. Jain, K. K. Verma, Liquid-phase microex-
3553 traction–gas chromatography–mass spectrometry for the de-
3554 termination of bromate, iodate, bromide and iodide in high-
3555 chloride matrix, *Journal of Chromatography A* 1148 (2007)
3556 145–151. doi:10.1016/j.chroma.2007.03.027.