Pyridinyl- and pyridazinyl-3,6-diazabicyclo[3.1.1]heptane-anilines: novel selective ligands

with subnanomolar affinity for α4β2 nACh receptors.

Francesco Deligia^a, Gabriele Murineddu^{b,*} Cecilia Gotti^c, Giulio Ragusa^b, Francesca Fasoli^c,

Miriam Sciaccaluga^d, Simona Plutino^e, Sergio Fucile^{d,e}, Giovanni Loriga^f, Battistina Asproni^b,

Gerard A. Pinna^b

^aIstituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, 07100

Sassari, Italy.

^bDepartment of Chemistry and Pharmacy, University of Sassari, Via F. Muroni 23/A, 07100

Sassari, Italy.

^cCNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milano, Italy.

^dIRCCS Neuromed, Via Atinese 18, 86077 Pozzilli, IS, Italy

^eDipartimento di Fisiologia e Farmacologia "V. Erspamer, Sapienza Università di Roma, P.le Aldo

Moro 5, 00185 Roma, Italy

^fInstitute of Translational Pharmacology, National Research Council, 09010 Pula, Cagliari, Italy

*This author serve as corresponding author:

Gabriele Murineddu: Phone: +39079228740; Fax: +39079228720; E-mail: muri@uniss.it

1

ABSTRACT

The cholinergic pathways in the central nervous system (CNS) of animals and humans are important for cognitive and behavioural functions. Until a few years ago, it was thought that the key molecules transducing the cholinergic message were the metabotropic muscarinic receptors, but it is now known that ionotropic neuronal nicotinic receptors (nAChRs) are also involved. Based on recent studies, we prepared a small library of novel 3-substituted-3,6-diazabicyclo[3.1.1]heptanes, whose binding activity and functionality have been assayed.

Among the synthesized compounds, the 3-(anilino)pyridine series resulted in the most interesting compounds with $\alpha_4\beta_2$ K_i values ranging from 0.0225 nM (12g) to 2.06 nM (12o).

Keywords: 3,6-diazabicyclo[3.1.1]heptanes, synthesis, neuronal nicotinic acetylcholine receptors, $\alpha_4\beta_2$ selectivity, agonism.

1. Introduction

Acetylcholine (ACh) was the first neurotransmitter discovered whose actions are mediated by two different cholinergic receptors, the metabotropic muscarinic acetylcholine receptors (mAChRs) and the ionotropic nicotinic acetylcholine receptors (nAChRs). The former belong to the superfamily of G protein-coupled transmembrane receptors (GPCRs), whose activation triggers a cascade of intracellular reactions mediated by the release of a second messenger, whereas the latter belong to the superfamily of ion channels, and mediate the fast synaptic response following interaction with ACh. To date, nAChR are the best characterized and consist of five subunits arranged symmetrically to delimit a channel through which the flow of cations (Na⁺, K⁺, Ca²⁺) occurs. Eleven neuronal nAChR subunits have been identified in mammals: α_2 - α_7 , α_9 , α_{10} ; and β_2 - β_4 which form pentameric receptors consisting of α_7 or α_9 alone, a combination of α_9 - α_{10} subunits or various combinations of α and β subunits (α_2 - α_6 and β_2 - β_4 , heteromeric receptors) [1,2]. The most expressed subtypes in mammalian brain are the heteromeric $\alpha_4\beta_2$ * receptors (*indicate the possibility of additional subunits) and the homomeric α_7 receptors, although some specific areas also contain $\alpha_3\beta_4$ * and the $\alpha_6\beta_2$ * subtypes [1,2].

At the presynaptic axon terminals, the nAChRs modulate the release of several neurotransmitters (acetylcholine, noradrenaline, dopamine, glutamate and GABA) [3,4]. Since the activation of nAChRs by ACh can modulate a number of physiological processes, nAChRs are involved in several pathological conditions such as inflammation [5], cancer [6] and central nervous system disorders [7].

It's well documented that nAChRs are the target of action of two natural compounds: (S)-Nicotine and epibatidine (**Fig. 1**). The former is assumed as the reference $\alpha_{\square}\beta_{\square}$ nAChR agonist in clinical trials and the second showed a high $\alpha_4\beta_2$ affinity ($K_i = 0.045$ nM). However, due to the lack of selectivity towards receptor subtypes, both are used only as the reference $\alpha_{\square}\beta_{\square}$ nAChR agonists in medicinal chemistry [8,9].

INSERT FIG.1

Bridged piperazines represent an unusual pharmacophore for nicotinic ligands [10]. The introduction of the 3,8-diazabicyclo[3.2.1]octane core provided agonists **1-3** (**Fig. 2**) which possessed a high $\alpha_4\beta_2$ affinity and a powerful analgesic activity due to the activation of central nAChRs [11].

Abbott's investigation of structures typified by the 2,5-diazabicyclo[2.2.1]heptane motif (**Fig. 2**) led to the enantiomers (R,R)-4 and (S,S)-4 and the chlorinated analogue 5, which is exceptionally powerful and possesses a broad spectrum of analgesic properties in several animal models for acute thermal nociception, in persistent and neuropathic pain. Unfortunately, its inadequate pharmacokinetic properties, and poor penetration into the CNS, have precluded the clinical evaluation for this compound [12]. However, this new series of derivatives allowed us to hypothesize a new pharmacophore model characterized by a nitrogen atom protonated that forms a hydrogen bridge with the Trp-149, an interaction of the CH adjacent to the pyridine nitrogen and a site of the binding pocket of the receptor, cation- π interaction between an aromatic residue (Trp-149) of the binding site of the receptor and the nitrogen atom of the protonated ligand, and a hydrogen bond between the pyridine nitrogen and one molecule of H₂O, held in that position by hydrogen bonds with Leu-119 and Asn-107 [13].

INSERT FIG. 2

The interesting structural variant represented by the 2,5-diazabicyclo[2.2.1]heptane core and the hypothesis of a new pharmacophore model for potential ligands of type nAChR $\alpha_4\beta_2$ and α_7 led us to design and synthesize a series of compounds with a 3,6-diazabicyclo[3.1.1]heptane structure typified by derivatives **6-11** (**Fig. 3**), some of which showed a high affinity and selectivity for the $\alpha_4\beta_2$ subtype receptor [14].

INSERT FIG. 3

Among these new derivatives, compounds bearing a halogen or an aryl ring on pyridine system, showed binding affinity comparable to that of epibatidine and its homologue 5. Therefore,

we designed the synthesis and biological evaluation of new selective ligands for nAChRs based on the 3,6-diazabicyclo[3.1.1]heptane system.

In this work three different series of 3,6-diazabicyclo[3.1.1]heptanes, reported in **Table 1**, have been synthesized, in which modulation of the substituents on the pyridine ring were evaluated for affinity and selectivity towards nAChRs.

2. Results and discussion

2.1. Chemistry

The chemistry leading from compound 15 to Boc-protected derivatives 16-18, which serve as starting compounds for next synthetic steps, was previously reported [15]. The syntheses of the derivatives 12a-o, 13a-o and 14a-o was performed by a coupling reaction starting from a suitable aniline (19-33) and 16, 17 or 18 followed by *N*-Boc deprotection of aryl-heteroaryl derivatives 34-78 (scheme 1).

INSERT SCHEME 1

2.2. nAChR binding affinities

With the aim to evaluate the effect of the introducing a nitrogen spacer in the 3-(5-arylpyridin-3-yl)-3,6-diazabicyclo[3.1.1]heptane series previously reported [15], we synthesized three new series of derivatives: 3-(anilino)pyridines (12a-o), 2-(anilino)pyridines (13a-o) and 6-(aniline)piperidines (14a-o). In **Table 1** are reported the neuronal nicotinic acetylcholine receptor affinities of newly synthesized compounds and, for comparison, K_i values of reference $\alpha_4\beta_2$ ligand [3 H]-Epibatidine and α_7 ligand [125 I] α -Bungarotoxine. Results are the average of five independent experiments with three replicates at each concentration.

In general all series showed low affinity for α_7 nAChRs with K_i ranging from 26.9 nM (12a) to 111 μ M (14f).

The series of 3-(anilino)pyridines (12a-o) provided the most interesting compounds between the aniline derivatives. Among these, derivative 12g, bearing a 4-NO₂ group on the benzene ring,

showed the best $\alpha_4\beta_2$ receptor profile with a K_i value of 22.5 pM. The compound bearing a 4-methoxyphenyl (12c), resulted in 2.6-fold loss in $\alpha_4\beta_2$ affinity ($K_i = 59.8$ pM) with respect to 12g. In general the introduction of a chlorine atom has generated compounds 12e and 12k with equivalent affinity (K_i $\alpha_4\beta_2 = 118$ pM and K_i $\alpha_4\beta_2 = 124$ pM, respectively), whereas the double substitution as for compound 12m resulted in 10-fold loss in $\alpha_4\beta_2$ affinity ($K_i = 1.25$ nM). The *N*-methyl derivative 12o, showed a 25-fold reduced $\alpha_4\beta_2$ affinity ($K_i = 2.06$ nM) as compared with the *N*-demethylated analogue 12a, suggesting that the aniline NH is involved in an interaction with the nAChRs.

Within the isomeric 2-anilino pyridine series (**13a-o**) the introduction on the aniline ring of both EWG and EDG resulted in compounds with $\alpha_4\beta_2$ affinity in the nanomolar range ($K_i = 0.569 - 52.1$ nM) and a lower α_7 affinity ($K_i = 235$ nM - 6.15 μ M). In particular, compound 4-CF₃-phenyl substituted **13i** resulted the only compound with a subnanomolar $\alpha_4\beta_2$ affinity ($K_i = 0.569$ nM). The mono- (**13e,j,k**) or dichlorination (**13l,m**) of the aniline ring resulted in derivatives endowed with a comparable $\alpha_4\beta_2$ affinity ($K_i = 2.2 - 2.49$ nM).

Finally, the series of 6-anilino piridazine (**14a-o**) showed generally lower affinity values towards both nAChR subtypes. Compound **14i**, bearing a 4-CF₃-phenyl was the most active derivative with an $\alpha_4\beta_2$ binding affinity K_i of 6.9 nM, 12-fold less potent with respect to the deaza-analogue **13i** of the previous series, whereas, the methylation of the aniline nitrogen in **14o** resulted in a loss of affinity towards both receptor subtypes (K_i $\alpha_4\beta_2 = 1.43$ μ M, K_i $\alpha_7 = 101$ μ M) compared with the *N*-demethylated analogue **14a** (K_i $\alpha_4\beta_2 = 441$ nM, K_i $\alpha_7 = 10.4$ μ M), strengthening the hypothesis of the involvement of the NH group in the receptor interaction.

The α_7 receptors subtype affinities were in line with the analogous pyridines, showing that the affinity for the α_7 receptor subtype is not affected by the presence of a pyridine or piridazine ring, but by the position of the substituent on the heteroaromatic ring.

INSERT TABLE 1

The $\alpha_3\beta_4$ nAChRs affinity for selected compounds was also evaluated (**Table 2**). In general, derivatives with high $\alpha_4\beta_2$ affinity showed $\alpha_3\beta_4$ K_i values in the pM range, as **12a** (K_i $\alpha_3\beta_4 = 799$ pM,

 $K_i \ \alpha_4\beta_2 = 80.7 \text{ pM}$), **12g** ($K_i \ \alpha_3\beta_4 = 684 \text{ pM}$, $K_i \ \alpha_4\beta_2 = 22.5 \text{ pM}$), **12h** ($K_i \ \alpha_3\beta_4 = 988 \text{ pM}$, $K_i \ \alpha_4\beta_2 = 342 \text{ pM}$) and **13i** ($K_i \ \alpha_3\beta_4 = 799 \text{ pM}$, $K_i \ \alpha_4\beta_2 = 569 \text{ pM}$). Among selected compounds, the 3-chlorine derivative of the the 3-(anilino)pyridine series, **12k**, resulted the most $\alpha_4\beta_2$ selective compounds ($K_i \ \alpha_3\beta_4/K_i \ \alpha_4\beta_2 = 2362.90$), whereas the rest showed $\alpha_4\beta_2$ selectivity ranging from 1.23-fold to 36.79-fold.

INSERT TABLE 2

2.3. Functional activity at the nAChRs

According to their binding $\alpha_4\beta_2$ receptors values, compounds 12c ($K_i = 59.8 \text{ pM}$) and 13g (K_i = 1.76 nM) have been chosen to determine their agonist activity on human recombinant $\alpha_4\beta_2$, α_7 and α₃β₄ receptors. This last subunit combination was included in the analysis, given that the selected compounds exhibited a binding affinity for $\alpha_3\beta_4$ receptor in the nM range: $K_i \alpha_3\beta_4$, 2.2 nM and 25 nM, for 12c and 13g, respectively. None of these two compound was able to evoke detectable whole-cell currents from transiently transfected GH4C1 cells expressing functional human α₇ nAChRs, as assessed by rapid application of 1 mM ACh. Compound 12c acted as a partial agonist on both $\alpha_3\beta_4$ and $\alpha_4\beta_2$ nAChRs, with EC₅₀ values of 2.90±0.03 μ M and 1.90±0.8 μ M, nH values of 1.79±0.01 µM and 0.9±0.3 µM, and maximal evoked currents of 42.3±0.8 % and 11±1 % of the maximal current amplitude elicited by 1 mM ACh, respectively (Fig. 4). By contrast, compound 13g was not able to evoke significant response from $\alpha_3\beta_4$ expressing cells and displayed a reduced potency for $\alpha_4\beta_2$ nAChRs, with EC₅₀ >10 μ M (Fig. 5). While the lack of effects of both compounds on α₇ nAChRs was expected, due to the high K_i values for this receptor subtype, their partial agonism on heteromeric nAChRs may appear surprising, basing again on the measured binding affinity values. However, the complex mechanisms linking binding, gating of the channel, affinity and efficacy do not allow to draw functional predictions from binding data [16]. It is worth to highlight that partial agonism is a very relevant feature when considering the therapeutic potential of nAChR-interacting compounds, in particular for smoking cessation [17].

INSERT FIG. 4

INSERT FIG. 5

3. Conclusions

Different series of derivatives endowed with a diazabicyclo[3.1.1]heptane core have been synthesized and tested and the small library of 45 compounds synthesized in this study allowed us to consolidate and further investigate SAR studies on the nicotinic pharmacophore.

In general, the introduction of substituted anilines is tolerated for $\alpha_4\beta_2$ receptor affinity, and in minor extent for $\alpha_3\beta_4$, whereas the same modification seems detrimental for α_7 receptor subtype. All new tested compounds showed an affinity and selectivity for $\alpha_4\beta_2$ receptors with K_i values between 22.5 pM, for compound 12g, and 1.54 μ M, for 14k; within this library, the most $\alpha_4\beta_2$ selective ligands resulted those of 3-(5-anilinopyridin-3-yl)-3,6-diazabicyclo[3.1.1]heptane series, compounds 12a-o. In particular, the aniline ring (12a) or its 4-OMe (12c), 4-F (12f) and 4-NO₂ (12g), resulted the best substituents. On the other hand, in the homologue series, only derivative 13i showed an $\alpha_4\beta_2$ K_i value of 0.57 nM.

Moreover, the *N*-methylation of aniline nitrogen also resulted in a substantial decrease of affinity, allowing to assume that the aniline NH plays an important role in receptor binding of these novel templates.

4. Experimental section

4.1. General procedures

All reactions involving air or moisture-sensitive compounds were performed under argon atmosphere. Solvents and reagents were obtained from commercial suppliers and were used without further purification. Microwave irradiation experiments were carried out in a Biotage® Microwave Initiator Eight 2.5 in the standard configuration as delivered, including proprietary software. All

experiments were carried out in sealed microwave process vials under normal or low absorption. After completion of the reaction, the vial was cooled down to 25 °C via air jet cooling before opening. Reaction temperatures were monitored by an IR sensor on the outside wall of the reaction. Hydrogenations were carried out in the 4560 Parr Apparatus using a H₂PEM-100 Parker Balston Hydrogen Generator. Flash column chromatography (FC) was performed automatically on Flashmaster (Biotage®) with pre-packed Biotage® SNAP silica gel cartridges or manually on silica gel (Kieselgel 60, 0.040-0.063 mm, Merck®). The progress of all reactions was monitored by thin layer chromatography (TLC) performed with Polygram SIL N-HR/HV₂₅₄ pre-coated plastic sheets (0.2 mm) on aluminum sheets (Kieselgel 60 F254, Merck®). Melting points were obtained on a Köfler melting point apparatus and are uncorrected. IR spectra were recorded as nujol mulls on NaCl plates with a Jasco FT/IR 460 plus spectrophotometer and are expressed in v (cm⁻¹). NMR experiments were run on a Varian Unity 200 spectrometer (200.07 MHz for ¹H, and 50.31 MHz for ¹³C). Spectra were acquired using deuterated chloroform (chloroform-d) as solvent. Chemical shifts (δ) for ¹H- and ¹³C-NMR spectra are reported in parts per million (ppm) using the residual nondeuterated solvent resonance as the internal standard (for chloroform-d: 7.26 ppm, ¹H and 77.16 ppm, ¹³C; for DMSO-d₆: 2.50 ppm, ¹H, 39.52 ppm, ¹³C). Data are reported as follows: chemical shift (sorted in descending order), multiplicity (s for singlet, bs for broad singlet, d for doublet, t for triplet, q for quadruplet, m for multiplet), integration and coupling constants (J) in Hertz (Hz). All final compounds displayed ≥ 95% purity as determined by elemental analysis on a Perkin-Elmer 240-B analyser, for C, H, and N. Unless otherwise specified, all materials, solvents, reagents and precursors 19-33 were obtained from commercial suppliers. Syntheses of compounds 15-18 have been previously reported [14, 15].

4.1.1. General procedure for the synthesis of anilines derivatives 34 - 78

To a solution of the haloderivative **16**, **17** or **18** (0.231 mmol) in toluene (3 mL), KO*t*Bu (39 mg, 0.347 mmol), Pd₂(dba)₃ (5 mg, 0.005 mmol), Xantophos (8 mg, 0.014 mmol) and the

appropriate aniline **19-33** (0.347 mmol) were added. The mixture was reacted under MW irradiation (0.5-2 h, 130 °C, low abs). The suspension was taken up with EtOAc, washed (H₂O), dried (Na₂SO₄) and concentrated *in vacuum*. The analytically pure product was isolated by FC as indicated below.

4.1.2. tert-Butyl 3-(5-anilinopyridin-3-yl)-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (34)

Title compound was prepared starting from **16** and aniline **19**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **34**. White solid; yield 75% (0.06 g, 0.17 mmol); mp 182-184 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.50 (d, 1H, J = 8.8 Hz), 2.58-2.77 (m, 1H), 3.26 (d, 2H, J =10.2), 3.78-4.07 (m, 2H), 4.38 (d, 2H, J = 5.8 Hz), 5.68 (bs, 1H, NH exch. with D₂O), 6.73 (t, 1H, J = 2.6 Hz), 6.97 (t, 1H, J = 7.2 Hz), 7.10 (d, 2H, J = 7.6Hz), 7.32 (d, 2H, J = 7.2 Hz), 7.70-7.90 (m, 2H). Elemental analysis calculated (%) for C₂₁H₂₆N₄O₂: C 68.83, H 7.15, N 15.29. Found: C 68.86, H 7.16, N 15.31.

4.1.3. tert-Butyl 3-[5-(4-methylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (35)

Title compound was prepared starting from **16** and aniline **20**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **35**. White solid; yield 80% (52 mg); mp 172-175 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.49 (d, 1H, J = 8.0 Hz), 2.32 (s, 3H), 2.78-2.94 (m, 1H), 3.25 (d, 2H, J = 10.2 Hz), 3.80-3.98 (m, 2H), 4.20-4.36 (m, 2H), 5.58 (bs, 1H, NH exch. with D₂O), 6.66 (s, 1H), 7.02 (d, 1H, J = 8.6 Hz), 7.11 (d, 2H, J = 8.2Hz), 7.70 (s, 1H), 7.78 (s, 1H). Elemental analysis calculated (%) for C₂₂H₂₈N₄O₂: C 69.45, H 7.42, N 14.73. Found: C 69.49, H 7.44, N 14.75.

4.1.4. tert-Butyl 3-[5-(4-methoxylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (36)

Title compound was prepared starting from **16** and aniline **21**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **36**. Pink solid; yield 77% (53 mg); mp 185-187 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.48 (d, 1H, J = 8.6 Hz), 2.52-2.78 (m, 1H), 3.24 (d, 2H, J = 11.0 Hz), 3.81 (s, 3H), 3.82-4.00 (m, 2H), 4.27 (d, 2H, J = 5.6 Hz), 5.47 (bs, 1H, NH exch. with D₂O), 6.52 (s, 1H), 6.88 (d, 2H, J = 9.0 Hz), 7.10 (d, 2H, J = 8.8 Hz), 7.60-7.80 (m, 2H). Elemental analysis calculated (%) for C₂₂H₂₈N₄O₃: C 66.64, H 7.12, N 14.13. Found: C 66.67, H 7.13, N 14.15.

4.1.5. tert-Butyl 3-[5-(4-ethoxylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (37)

Title compound was prepared starting from **16** and aniline **22**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **37**. Phink solid; yield 97% (92 mg); mp 179-180 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.42 (s, 3H), 1.48 (d, 1H, J = 8.6 Hz), 2.55-2.78 (m, 1H), 3.23 (d, 2H, J = 10.2 Hz), 3.77-3.90 (m, 2H), 4.03 (q, 2H, J = 7.4 Hz), 4.26 (d, 2H, J = 5.2 Hz), 5.47 (bs, 1H, NH exch. with D₂O), 6.51 (s, 1H), 6.87 (d, 2H, J = 8.8 Hz), 7.08 (d, 2H, J = 8.8Hz), 7.68 (d, 2H, J = 8.8 Hz). Elemental analysis calculated (%) for C₂₃H₃₀N₄O₃: C 67.29, H 7.37, N 13.65. Found: C 67.34, H 7.39, N 13.67.

4.1.6. tert-Butyl 3-[5-(4-chloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (38)

Title compound was prepared starting from **16** and aniline **23**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **38**. Beige solid; yield 91% (84 mg); mp 165-170 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.50 (d, 1H, J = 8.4 Hz), 2.60-2.75 (m, 1H), 3.25 (d, 2H, J = 10.2 Hz), 3.80-4.00 (m, 2H), 4.29 (d, 2H, J = 5.6 Hz), 5.68 (bs, 1H, NH exch. with D₂O), 6.67 (s, 1H), 7.02 (d, 2H, J = 8.8 Hz), 7.24 (d, 2H, J = 9.2 Hz), 7.70-7.85 (m, 2H). Elemental

analysis calculated (%) for C₂₁H₂₅ClN₄O₂: C 62.91, H 6.29, N 13.98. Found: C 63.98, H 6.31, N 14.27.

4.1.7. tert-Butyl 3-[5-(4-fluoroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (39)

Title compound was prepared starting from **16** and aniline **24**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **39**. White solid; yield 88% (58 mg); mp 199-202 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.49 (d, 1H, J = 8.6 Hz), 2.56-2.77 (m, 1H), 3.25 (d, 2H, J = 10.2 Hz), 3.73-4.02 (m, 2H), 4.27 (d, 2H, J = 5.4 Hz), 5.57 (bs, 1H, NH exch. with D₂O), 6.58 (s, 1H), 6.87-7.18 (m, 4H), 7.70-7.83 (m, 2H). Elemental analysis calculated (%) for C₂₁H₂₅FN₄O₂: C 65.61, H 6.55, N 14.57. Found: C 65.70, H 6.57, N 14.59.

4.1.8. tert-Butyl 3-[5-(4-nitroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (40)

Title compound was prepared starting from **16** and aniline **25**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **40**. Yellowish solid; yield 82% (78 mg); mp 227-230 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.53 (d, 1H, J = 9.0 Hz), 2.60-2.80 (m, 1H), 3.30 (d, 2H, J = 10.6 Hz), 3.80-4.02 (m, 2H), 4.31 (d, 2H, J = 5.0 Hz), 6.28 (bs, 1H, NH exch. with D₂O), 6.81 (s, 1H), 6.98 (d, 2H, J = 9.0 Hz), 7.97 (s, 2H), 8.15 (d, 2H, J = 9.2 Hz). Elemental analysis calculated (%) for C₂₁H₂₅N₅O₄: C 61.30, H 6.12, N 17.02. Found: C 61.39, H 6.13, N 17.09.

4.1.9. tert-Butyl 3-[5-(4-hydroxyanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (41)

Title compound was prepared starting from **16** and aniline **26**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **41**. Red solid; yield 46% (41 mg); mp 68-70 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.38 (bs, 9H), 1.48 (d, 1H, J = 8.0 Hz), 2.57-2.78 (m, 2H, OH exch.

with D_2O), 3.25 (d, 2H, J = 10.0 Hz), 3.75-4.00 (m, 2H), 4.15-4.37 (m, 2H), 5.50 (bs, 1H, NH exch. with D_2O), 6.46 (s, 1H), 6.85 (d, 2H, J = 8.8 Hz), 7.03 (d, 2H, J = 8.8 Hz), 7.58-7.78 (m, 2H). Elemental analysis calculated (%) for $C_{21}H_{26}N_4O_3$: C 69.95, H 6.85, N 14.65. Found: C 70.47, H 6.88, N 14.69.

4.1.10. tert-Butyl 3-[5-(4-trifluoromethylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (42)

Title compound was prepared starting from **16** and aniline **27**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **42**. Yellowish solid; yield 55% (55 mg); mp 95-97 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.51 (d, 1H, J = 8.6 Hz), 2.60-2.78 (m, 1H), 3.28 (d, 2H, J = 10.6 Hz), 3.77-4.05 (m, 2H), 4.30 (d, 2H, J = 6.2 Hz), 5.89 (bs, 1H, NH exch. with D₂O), 6.77 (s, 1H), 7.08 (d, 2H, J = 8.4 Hz), 7.50 (d, 2H, J = 7.4 Hz), 7.89 (d, 2H, J = 7.0 Hz). Elemental analysis calculated (%) for C₂₂H₂₅F₃N₄O₂: C 60.82, H 5.80, N 12.90. Found: C 61.26, H 5.82, N 12.97.

4.1.12. tert-Butyl 3-[5-(2-chloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (43)

Title compound was prepared starting from **16** and aniline **28**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **43**. Beige solid; yield 70% (65 mg); mp 71-72 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.38 (bs, 9H), 1.51 (d, 1H, J = 6.0 Hz), 2.60-2.80 (m, 1H), 3.29 (d, 2H, J = 10.6 Hz), 3.80-4.10 (m, 2H), 4.29 (d, 2H, J = 4.6 Hz), 6.03 (bs, 1H, NH exch. with D₂O), 6.70-6.79 (m, 1H), 6.85 (t, 1H, J = 7.4 Hz), 7.15 (t, 1H, J = 8.4Hz), 7.18-7.45 (m, 2H), 7.80-7.87 (m, 1H), 7.88-7.96 (m, 1H). Elemental analysis calculated (%) for C₂₁H₂₅ClN₄O₂: C 62.91, H 6.29, N 13.98. Found: C 63.70, H 6.31, N 14.22.

4.1.13. tert-Butyl 3-[5-(3-chloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (44)

Title compound was prepared starting from **16** and aniline **29**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **44**. Beige solid; yield 98% (91 mg); mp 170-174 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.50 (d, 1H, J = 8.6 Hz), 2.58-2.75 (m, 1H), 3.27 (d, 2H, J = 10.4 Hz), 3.75-4.08 (m, 2H), 4.30 (d, 2H, J = 6.8 Hz), 5.78 (bs, 1H, NH scambia con D₂O), 6.72 (s, 1H), 6.87-7.00 (m, 2H), 7.06 (s, 1H), 7.10-7.24 (m, 1H), 7.83 (d, 2H, J = 4.8 Hz). Elemental analysis calculated (%) for C₂₁H₂₅ClN₄O₂: C 62.91, H 6.29, N 13.98. Found: C 63.75, H 6.32, N 14.27.

4.1.14. tert-Butyl 3-[5-(2,4-dichloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (45)

Title compound was prepared starting from **16** and aniline **30**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **45**. Beige solid; yield 82% (82 mg); mp 85-89 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.26-1.55 (m, 10H), 2.60-2.70 (m, 1H), 3.27 (d, 2H, J = 10.6 Hz), 3.75-4.10 (m, 2H), 4.20 (d, 2H, J = 5.6 Hz), 5.97 (bs, 1H, NH exch. with D₂O), 6.72 (s, 1H), 7.05-7-23 (m, 2H), 7.30-7.45 (m, 1H), 7.80-7.98 (m, 2H). Elemental analysis calculated (%) for C₂₁H₂₄Cl₂N₄O₂: C 57.94, H 5.56, N 12.87. Found: C 58.15, H 5.58, N 12.95.

4.1.15. tert-Butyl 3-[5-(3,4-dichloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (46)

Title compound was prepared starting from **16** and aniline **31**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **46**. Beige solid; yield 68% (68 mg); mp 147-150 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.51 (d, 1H, J = 9.0 Hz), 2.60-2.75 (m, 1H), 3.27 (d, 2H, J = 10.4 Hz), 3.78-4.07 (m, 2H), 4.29 (d, 2H, J = 5.6 Hz), 5.78 (bs, 1H, NH exch. with D₂O), 6.68 (s, 1H), 6.82-6.97 (m, 1H), 7.15 (s, 1H), 7.33 (s, 1H), 7.84 (s, 2H). Elemental analysis calculated (%) for C₂₁H₂₄Cl₂N₄O₂: C 57.94, H 5.56, N 12.87. Found: C 58.19, H 5.59, N 12.99.

4.1.16. tert-Butyl 3-[5-(3,4-methylendioxyanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (47)

Title compound was prepared starting from **16** and aniline **32**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **47**. Red solid; yield 95% (90 mg); mp 178-180 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.48 (d, 1H, J = 8.4 Hz), 2.58-2.75 (m, 1H), 3.24 (d, 2H, J = 10.0 Hz), 3.80-4.00 (m, 2H), 4.20-4.38 (m, 2H), 5.50 (bs, 1H, NH exch. with D₂O), 5.96 (s, 2H), 6.50-6.64 (m, 2H), 6.66-6.80 (m, 2H), 7.60-7.76 (m, 2H). Elemental analysis calculated (%) for C₂₂H₂₆N₄O₂: C 64.37, H 6.38, N 13.65. Found: C 64.49, H 6.40, N 13.69.

4.1.17. tert-Butyl 3-[5-(N-methylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (48)

Title compound was prepared starting from **16** and aniline **33**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **48**. White solid; yield 83% (73 mg); mp 92-94 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.48 (d, 1H, J = 8.6 Hz), 2.58-2.75 (m, 1H), 3.23 (d, 2H, J = 10.2 Hz), 3.33 (s, 3H), 3.75-4.02 (m, 2H), 4.27 (d, 2H, J = 5.8 Hz), 6.56 (s, 1H), 6.85-7.18 (m, 3H), 7.32 (d, 2H, J = 8.4 Hz), 7.77 (s, 2H). Elemental analysis calculated (%) for C₂₂H₂₈N₄O₂: C 69.45, H 7.42, N 14.73. Found: C 69.63, H 7.44, N 14.77.

4.1.18. tert-Butyl 3-(6-anilinopyridin-3-yl)-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (49)

Title compound was prepared starting from **17** and aniline **19**. The residue was purified by FC (petroleum ether/EtOAc 7:3) to afford **49**. Yellowish solid; yield 48% (29 mg); mp 158-160 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.52 (d, 1H, J = 8.2 Hz), 2.60-2.80 (m, 1H), 3.25 (d, 2H, J = 10.2 Hz), 3.78-4.07 (m, 2H), 4.29 (d, 2H, J = 5.4 Hz), 6.19 (bs, 1H, NH exch. with D₂O), 6.85-7.07 (m, 3H), 7.16-7.40 (m, 4H), 7.70-7.88 (m, 1H). Elemental analysis calculated (%) for $C_{21}H_{26}N_{4}O_{2}$: C 68.83, H 7.15, N 15.29. Found: C 68.91, H 7.17, N 15.34.

4.1.19. tert-Butyl 3-[6-(4-methylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (50)

Title compound was prepared starting from **17** and aniline **20**. The residue was purified by FC (petroleum ether/EtOAc 1:1) to afford **50**. Yellowish solid; yield 71% (62 mg); mp 155-158 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.52 (d, 1H, J = 8.2 Hz), 2.30 (s, 3H), 2.58-2.68 (m, 1H), 3.25 (d, 2H, J = 9.6 Hz), 3.77-4.05 (m, 2H), 4.20-4.37 (m, 2H), 6.12 (bs, 1H, NH exch. with D₂O), 6.89 (d, 2H, J = 9.0 Hz), 6.93-7.18 (m, 5H), 7.70-7.87 (m, 1H). Elemental analysis calculated (%) for C₂₂H₂₈N₄O₂: C 69.45, H 7.42, N 14.73. Found: C 69.51, H 7.43, N 14.77.

4.1.20. tert-Butyl 3-[6-(4-methoxylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (51)

Title compound was prepared starting from **17** and aniline **21**. The residue was purified by FC (petroleum ether/EtOAc 7:3) to afford **51**. Orange solid; yield 61% (56 mg); mp 144-146 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.52 (d, 1H, J = 8.4 Hz), 2.50-2.70 (m, 1H), 3.24 (d, 2H, J = 10.0), 3.79 (s, 3H), 3.80-4.00 (m, 2H), 4.20-4.40 (m, 2H), 6.03 (bs, 1H, NH scambia con D₂O), 6.76 (d, 1H, J = 8.8 Hz), 6.86 (d, 2H, J = 9.2 Hz), 6.99 (dd, 1H, J_o = 2.8 Hz, J_m = 9.2 Hz), 7.17 (d, 2H, J = 8.8 Hz), 7.65-7.80 (m, 1H). Elemental analysis calculated (%) for C₂₂H₂₈N₄O₃: C 66.64, H 7.12, N 14.13. Found: C 66.69, H 7.13, N 14.17.

4.1.21. tert-Butyl 3-[6-(4-ethoxylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (52)

Title compound was prepared starting from **17** and aniline **22**. The residue was purified by FC (petroleum ether/EtOAc 7:3) to afford **52**. Orange solid; yield 70% (66 mg); mp 133-135 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.41 (t, 3H, J = 7.0 Hz), 1.52 (d, 1H, J = 8.4 Hz), 2.55-2.80 (m, 1H), 3.24 (d, 2H, J = 9.78), 3.75-3.90 (m, 2H), 4.01 (q, 2H, J = 7.2 Hz), 4.20-4.26 (m, 2H), 6.00 (bs, 1H, NH exch. with D₂O), 6.76 (d, 1H, J = 8.8 Hz), 6.86 (d, 2H, J = 9.0 Hz), 6.98 (dd, 2H, J = 9

1H, $J_o = 3.2$ Hz, $J_m = 9.0$ Hz), 7.16 (d, 2H, J = 8.8 Hz), 7.73 (d, 1H, J = 3.0 Hz). Elemental analysis calculated (%) for $C_{23}H_{30}N_4O_3$: C 67.29, H 7.37, N 13.65. Found: C 67.35, H 7.40, N 13.68.

4.1.22. tert-Butyl 3-[6-(4-chloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (53)

Title compound was prepared starting from **17** and aniline **23**. The residue was purified by FC (petroleum ether/EtOAc 8:2) to afford **53**. Red solid; yield 82% (76 mg); mp 176-179 °C. 1 H-NMR (200 MHz, CDCl₃) δ 1.36 (bs, 9H), 1.52 (d, 1H, J = 8.2 Hz), 2.60-2.80 (m, 1H), 3.25 (d, 2H, J = 10.4 Hz), 3.80-4.00 (m, 2H), 4.29 (d, 2H, J = 5.2 Hz), 6.19 (bs, 1H, NH exch. with D₂O), 6.86 (d, 1H, J = 9.6 Hz), 7.02 (d, 1H, J = 5.8 Hz), 7.16-7.23 (m, 4H), 7.70-7.85 (m, 1H). Elemental analysis calculated (%) for C₂₁H₂₅ClN₄O₂: C 62.91, H 6.29, N 13.98. Found: C 63.91, H 6.30, N 14.15.

4.1.23. tert-Butyl 3-[6-(4-fluoroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (54)

Title compound was prepared starting from **17** and aniline **24**. The residue was purified by FC (petroleum ether/EtOAc 7:3) to afford **54**. Yellowish solid; yield 88% (78 mg); mp 163-166 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.52 (d, 1H, J = 8.6 Hz), 2.58-2.75 (m, 1H), 3.24 (d, 2H, J = 10.6 Hz), 3.70-4.10 (m, 2H), 4.28 (d, 2H, J = 5.2 Hz), 6.10 (bs, 1H, NH exch. with D₂O), 6.81 (d, 1H, J = 9.0 Hz), 6.90-7.08 (m, 3H), 7.10-7.28 (m, 2H), 7.70-7.85 (m, 1H). Elemental analysis calculated (%) for C₂₁H₂₅FN₄O₂: C 65.61, H 6.55, N 14.57. Found: C 65.71, H 6.56, N 14.60.

4.1.24. tert-Butyl 3-[6-(4-nitroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (55)

Title compound was prepared starting from 17 and aniline 25. The residue was purified by FC (petroleum ether/EtOAc 7:3) to afford 55. Red solid; yield 84% (80 mg); mp 218-220 °C. ¹H-

NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.45-1.60 (m, 1H), 2.60-2.80 (m, 1H), 3.30 (d, 2H, J = 10.0 Hz), 3.80-4.10 (m, 2H), 4.20-4.40 (m, 2H), 6.73 (bs, 1H, NH exch. with D₂O), 6.95 (d, 1H, J = 9.4 Hz), 7.00-7.20 (m, 1H), 7.32 (d, 2H, J = 9.0 Hz), 7.80-8.00 (m, 1H), 8.15 (d, 2H, J = 9.2 Hz). Elemental analysis calculated (%) for C₂₁H₂₅N₅O₄: C 61.30, H 6.12, N 17.02. Found: C 61.37, H 6.13, N 17.08.

4.1.25. tert-Butyl 3-[6-(4-hydroxyanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (56)

Title compound was prepared starting from **17** and aniline **26**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **56**. Red solid; yield 64% (56 mg); mp 94-96 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.52 (d, 1H, J = 8.2 Hz), 2.50-2.80 (m, 2H, OH exch. with D₂O), 3.23 (d, 2H, J = 10.2 Hz), 3.75-4.00 (m, 2H), 4.15-4.35 (m, 2H), 6.07 (bs, 1H, NH exch. with D₂O), 6.75 (d, 2H, J = 8.0 Hz), 6.78-6.85 (m, 1H), 6.90-7.03 (m, 1H), 7.07 (d, 2H, J = 9.0 Hz), 7.60-7.20 (m, 1H). Elemental analysis calculated (%) for C₂₁H₂₆N₄O₃: C 69.95, H 6.85, N 14.65. Found: C 70.42, H 6.86, N 14.67.

4.1.26. tert-Butyl 3-[6-(4-trifluoromethylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (57)

Title compound was prepared starting from **17** and aniline **27**. The residue was purified by FC (petroleum ether/EtOAc 7:3) to afford **57**. Yellowish solid; yield 40% (40 mg); mp 156-160 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.52 (d, 1H, J = 8.0 Hz), 2.60-2.80 (m, 1H), 3.27 (d, 2H, J = 10.2 Hz), 3.78-4.10 (m, 2H), 4.20-4.45 (m, 2H), 6.41 (bs, 1H, NH exch. with D₂O), 6.93 (d, 1H, J = 8.8 Hz), 7.00-7.12 (m, 1H), 7.28 (d, 2H, J = 10.2 Hz), 7.48 (d, 2H, J=8.2 Hz), 7.75-7.95 (m, 1H). Elemental analysis calculated (%) for C₂₂H₂₅F₃N₄O₂: C 60.82, H 5.80, N 12.90. Found: C 61.30, H 5.83, N 12.98.

4.1.27. tert-Butyl 3-[6-(2-chloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (58)

Title compound was prepared starting from **17** and aniline **28**. The residue was purified by FC (petroleum ether/EtOAc 8:2) to afford **58**. Yellowish solid; yield 65% (60 mg); mp 170-172 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.53 (d, 1H, J = 8.2 Hz), 2.60-2.80 (m, 1H), 3.27 (d, 2H, J = 10.0 Hz), 3.80-4.10 (m, 2H), 4.20-4.40 (m, 2H), 6.60 (bs, 1H, NH exch. with D₂O), 6.28 (t, 1H, J = 6.6 Hz), 6.94 (d, 1H, J = 8.8 Hz), 7.05 (dd, 1H, J_o = 2.6 Hz, J_m = 9.2 Hz), 7.18 (t, 2H, J = 7.4 Hz), 7.34 (d, 1H, J = 7.8 Hz), 7.75-7.95 (m, 2H). Elemental analysis calculated (%) for C₂₁H₂₅ClN₄O₂: C 62.91, H 6.29, N 13.98. Found: C 63.72, H 6.32, N 14.24.

4.1.28. tert-Butyl 3-[6-(3-chloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (59)

Title compound was prepared starting from **17** and aniline **29**. The residue was purified by FC (petroleum ether/EtOAc 7:3) to afford **59**. Yellowish solid; yield 74% (68 mg); mp 175-178 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.53 (d, 1H, J = 8.2 Hz), 2.60-2.80 (m, 1H), 3.27 (d, 2H, J = 10.4 Hz), 3.80-4.10 (m, 2H), 4.30 (d, 2H, J = 4.4 Hz), 6.55 (bs, 1H, NH exch. with D₂O), 6.87 (d, 1H, J = 9.2 Hz), 7.00-7.22 (m, 2H), 7.28-7.40 (m, 1H), 7.75-7.85 (m, 1H), 7.88 (d, 1H, J = 8.8 Hz). Elemental analysis calculated (%) for C₂₁H₂₅ClN₄O₂: C 62.91, H 6.29, N 13.98. Found: C 64.15, H 6.41, N 14.43.

4.1.29. tert-Butyl 3-[6-(2,4-dichloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (60)

Title compound was prepared starting from **17** and aniline **30**. The residue was purified by FC (petroleum ether/EtOAc 7:3) to afford **60**. Yellowish solid; yield 64% (64 mg); mp 142-146 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.26-1.55 (m, 10H), 2.60-2.70 (m, 1H), 3.27 (d, 2H, J = 10.6 Hz), 3.75-4.10 (m, 2H), 4.20 (d, 2H, J = 5.6 Hz), 5.97 (bs, 1H, NH exch. with D₂O), 6.72 (s, 1H), 7.05-7-

23 (m, 2H), 7.30-7.45 (m, 1H), 7.80-7.98 (m, 2H). Elemental analysis calculated (%) for $C_{21}H_{24}Cl_2N_4O_2$: C 57.94, H 5.56, N 12.87. Found: C 58.15, H 5.58, N 12.95.

4.1.30. tert-Butyl 3-[6-(3,4-dichloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (61)

Title compound was prepared starting from **17** and aniline **31**. The residue was purified by FC (petroleum ether/EtOAc 7:3) to afford **61**. White solid; yield 72% (72 mg); mp 210-213 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.52 (d, 1H, J = 8.6 Hz), 2.60-2.80 (m, 1H), 3.26 (d, 2H, J = 10.2 Hz), 3.80-4.05 (m, 2H), 4.29 (d, 2H, J = 5.6 Hz), 6.22 (bs, 1H, NH exch. with D₂O), 6.84 (d, 1H, J = 9.2 Hz), 7.00-7.15 (m, 2H), 7.28 (d, 1H, J = 8.4 Hz), 7.49 (d, 1H, J = 2.8 Hz), 7.81 (d, 1H, J = 2.4 Hz). Elemental analysis calculated (%) for C₂₁H₂₄Cl₂N₄O₂: C 57.94, H 5.56, N 12.87. Found: C 58.32, H 5.61, N 13.64.

4.1.31. tert-Butyl 3-[6-(3,4-methylendioxyanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (62)

Title compound was prepared starting from **17** and aniline **32**. The residue was purified by FC (petroleum ether/EtOAc 1:1) to afford **62**. Beige solid; yield 90% (85 mg); mp 130-132 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.52 (d, 1H, J = 8.6 Hz), 2.58-2.70 (m, 1H), 3.24 (d, 2H, J = 10.0 Hz), 3.80-3.90 (m, 2H), 4.20-4.36 (m, 2H), 5.93 (s, 2H), 6.02 (bs, 1H, NH exch. with con D₂O), 6.62 (dd, 1H, J_o = 2.2 Hz, J_m = 8.4 Hz), 6.70-6.83 (m, 3H), 6.99 (dd, 1H, J_o = 2.6 Hz, J_m = 8.8 Hz), 7.70-7.74 (m, 1H). Elemental analysis calculated (%) for C₂₂H₂₆N₄O₄: C 64.37, H 6.38, N 13.65. Found: C 65.47, H 6.51, N 13.78.

4.1.32. tert-Butyl 3-[6-(N-methylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (63)

Title compound was prepared starting from 17 and aniline 33. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford 63. White solid; yield 91% (80 mg); mp 122-124 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.51 (d, 1H, J = 8.4 Hz), 2.60-2.80 (m, 1H), 3.25 (d, 2H, J = 9.4 Hz), 3.43 (s, 3H), 3.80-4.00 (m, 2H), 4.20-4.35 (m, 2H), 6.80 (d, 1H, J = 9.0 Hz), 6.85-7.05 (m, 2H), 7.12 (d, 2H, J = 8.2 Hz), 7.32 (d, 2H, J = 8.4 Hz), 7.80-7.90 (m, 1H). Elemental analysis calculated (%) for C₂₂H₂₈N₄O₂: C 69.45, H 7.42, N 14.73. Found: C 70.48, H 7.51, N 15.62.

4.1.33. tert-Butyl 3-(6-anilinopyridazin-3-yl)-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (64).

Title compound was prepared starting from **18** and aniline **19**. The residue was purified by FC (petroleum ether/EtOAc 1:1) to afford **64**. Beige solid; yield 98% (83 mg); mp 122-125 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.52 (d, 1H, J = 8.8 Hz), 2.60-2.80 (m, 1H), 3.38-3.57 (m, 2H), 4.15 (d, 2H, J = 12.0 Hz), 4.31 (d, 2H, J = 4.6 Hz), 6.44 (bs, 1H, NH exch. with D₂O), 6.82 (d, 1H, J = 9.4 Hz), 6.90-7.00 (m, 1H), 7.08 (d, 1H, J = 9.6 Hz), 7.20-7.40 (m, 4H). Elemental analysis calculated (%) for C₂₀H₂₅N₅O₂: C 65.37, H 6.86, N 19.06. Found: C 66.52, H 7.08, N 19.64.

4.1.34. tert-Butyl 3-[6-(4-methylanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (65)

Title compound was prepared starting from **18** and aniline **20**. The residue was purified by FC (petroleum ether/EtOAc 1:1) to afford **65**. White solid; yield 54% (35 mg); mp 204-209 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.52 (d, 1H, J = 8.6 Hz), 2.31 (s, 3H), 2.60-2.78 (m, 1H), 3.49-3.66 (m, 2H), 4.16 (d, 2H, J = 12.6 Hz), 4.20-4.37 (m, 2H), 6.34 (bs, 1H, NH exch. with D₂O), 6.81 (d, 1H, J = 9.6 Hz), 7.03 (d, 1H, J = 9.6 Hz), 7.10 (d, 2H, J = 8.0 Hz), 7.20 (d, 2H, J = 8.0 Hz). Elemental analysis calculated (%) for C₂₁H₂₇N₅O₂: C 66.12, H 7.13, N 18.36. Found: C 67.51, H 7.33, N 18.55.

4.1.35. tert-Butyl 3-[6-(4-methoxylanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (66)

Title compound was prepared starting from **18** and aniline **21**. The residue was purified by FC (petroleum ether/EtOAc 1:1) to afford **66**. Beige solid; yield 47% (32 mg); mp 164-165 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.51 (d, 1H, J = 8.2 Hz), 2.60-2.80 (m, 1H), 3.40-3.76 (m, 2H), 3.80 (s, 3H), 4.14 (d, 2H, J = 10.2 Hz), 4.20-4.37 (m, 2H), 6.28 (bs, 1H, NH exch. with D₂O), 6.78 (d, 1H, J = 10.0 Hz), 6.87 (d, 2H, J = 9.0 Hz), 6.94 (d, 1H, J = 10.0 Hz), 7.24 (d, 2H, J = 9.0 Hz). Elemental analysis calculated (%) for C₂₁H₂₇N₅O₃: C 63.46, H 6.86, N 17.62. Found: C 64.21, H 6.90, N 17.73.

4.1.36. tert-Butyl 3-[6-(4-ethoxylanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (67)

Title compound was prepared starting from **18** and aniline **22**. The residue was purified by FC (petroleum ether/EtOAc 1:1) to afford **67**. Beige solid; yield 53% (50 mg); mp 168-171 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.20-1.60 (m, 13H), 2.60-2.80 (m, 1H), 3.40-3.76 (m, 2H), 4.01 (q, 2H, J = 6.8 Hz), 4.13 (d, 2H, J = 11.2 Hz), 4.25-4.37 (m, 2H), 6.28 (bs, 1H, NH exch. with D₂O), 6.68-7.10 (m, 4H), 7.23 (d, 2H, J = 8.8 Hz). Elemental analysis calculated (%) for C₂₂H₂₉N₅O₃: C 64.21, H 7.10, N 17.02. Found: C 64.75, H 7.23, N 17.49.

4.1.37. tert-Butyl 3-[6-(4-chloroanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (68)

Title compound was prepared starting from **18** and aniline **23**. The residue was purified by FC (petroleum ether/EtOAc 1:1) to afford **68**. Beige solid; yield 60% (56 mg); mp 203-206 °C. 1 H-NMR (200 MHz, CDCl₃) δ 1.36 (bs, 9H), 1.52 (d, 1H, J = 8.6 Hz), 2.60-2.80 (m, 1H), 3.40-3.76 (m, 2H), 4.16 (d, 2H, J = 11.4 Hz), 4.25-4.37 (m, 2H), 6.38 (bs, 1H, NH exch. with D₂O), 6.83 (d, 1H, J

= 9.4 Hz), 7.98 (d, 1H, J = 9.6 Hz), 7.18-7.45 (m, 4H). Elemental analysis calculated (%) for $C_{20}H_{24}ClN_5O_2$: C 59.77, H 6.02, N 17.43. Found: C 61.13, H 6.23, N 17.75.

4.1.38. tert-Butyl 3-[6-(4-fluoroanilino)pyridazin-3-yl[-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (69)

Title compound was prepared starting from **18** and aniline **24**. The residue was purified by FC (petroleum ether/EtOAc 1:1) to afford **69**. Yellowish solid; yield 46% (41 mg); mp 197-198 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.52 (d, 1H, J = 8.8 Hz), 2.60-2.80 (m, 1H), 3.36-3.70 (m, 2H), 4.14 (d, 2H, J = 11.0 Hz), 4.30 (d, 2H, J = 6.0 Hz), 6.36 (bs, 1H, NH exch. with D₂O), 6.80 (d, 1H, J = 9.6 Hz), 6.90-7.15 (m, 3H), 7.27-7.45 (m, 2H). Elemental analysis calculated (%) for C₂₀H₂₄FN₅O₂: C 62.32, H 6.28, N 18.17. Found: C 62.54, H 6.34, N 18.48.

4.1.39. tert-Butyl 3-[6-(4-nitroanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (70)

Title compound was prepared starting from **18** and aniline **25**. The residue was purified by FC (petroleum ether/EtOAc 1:1) to afford **70**. Yellowish solid; yield 65% (62 mg); mp 201-203 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.53 (d, 1H, J = 8.4 Hz), 2.60-2.80 (m, 1H), 3.36-3.60 (m, 2H), 4.17 (d, 2H, J = 11.8 Hz), 4.25-4.40 (m, 2H), 6.38 (bs, 1H, NH exch. with D₂O), 6.84 (d, 1H, J = 9.8 Hz), 7.08 (d, 1H, J = 10.0 Hz), 7.63 (d, 2H, J = 9.0 Hz), 8.14 (d, 2H, J = 8.8 Hz). Elemental analysis calculated (%) for C₂₀H₂₄N₆O₄: C 58.24, H 5.87, N 20.38. Found: C 59.23, H 5.93, N 20.67.

4.1.40. tert-Butyl 3-[6-(4-hydroxyanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (71)

Title compound was prepared starting from **18** and aniline **26**. The residue was purified by FC (petroleum ether/EtOAc 3:7) to afford **71**. Beige solid; yield 54% (48 mg); mp 163-166 °C. ¹H-

NMR (200 MHz, CDCl₃) δ = 1.30-1.47 (m, 10H), 2.60-2.80 (m, 1H), 3.40-3.75 (m, 2H), 3.13 (d, 2H, J = 9.8 Hz), 4.27-4.42 (m, 2H), 6.60 (bs, 1H, NH exch. with D₂O), 6.75-7.10 (m, 2H, OH exch. with D₂O), 7.11-7.45 (m, 4H), 7.57-7.70 (m, 1H). Elemental analysis calculated (%) for C₂₀H₂₅N₅O₃: C 62.65, H 6.57, N 18.26. Found: C 63.54, H 6.76, N 18.75.

4.1.41. tert-Butyl 3-[6-(4-trifluoromethylanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (72)

Title compound was prepared starting from **18** and aniline **27**. The residue was purified by FC (petroleum ether/EtOAc 1:1) to afford **72**. Yellowish solid; yield 33% (33 mg); mp 147-150 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.53 (d, 1H, J = 9.0 Hz), 2.58-2.80 (m, 1H), 3.40-3.78 (m, 2H), 4.18 (d, 2H, J = 11.6 Hz), 4.25-4.40 (m, 2H), 6.78 (bs, 1H, NH exch. with D₂O), 6.87 (d, 1H, J = 9.6 Hz), 7.00-7.20 (m, 2H), 7.45-7.65 (m, 3H). Elemental analysis calculated (%) for $C_{21}H_{24}F_{3}N_{5}O_{2}$: C 57.92, H 5.56, N 16.08. Found: C 59.10, H 5.58, N 16.35.

4.1.42. tert-Butyl 3-[6-(2-chloroanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (73)

Title compound was prepared starting from **18** and aniline **28**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **73**. Yellowish solid; yield 58% (54 mg); mp 134-135 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.57 (d, 1H, J = 6.6 Hz), 2.60-2.80 (m, 1H), 3.42-3.68 (m, 2H), 4.18 (d, 2H, J = 11.6 Hz), 4.32 (d, 2H, J = 5.4 Hz), 6.73 (bs, 1H, NH exch. with D₂O), 6.87 (d, 1H, J = 9.4 Hz), 6.93 (s, 1H), 7.03 (d, 1H, J = 9.8 Hz), 7.15-7.23 (m, 1H), 7.38 (d, 1H, J = 8.0 Hz), 8.21 (d, 1H, J = 8.4 Hz). Elemental analysis calculated (%) for C₂₀H₂₄ClN₅O₂: C 59.77, H 6.02, N 17.43. Found: C 61.13, H 6.23, N 17.75.

4.1.43. tert-Butyl 3-[6-(3-chloroanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (74)

Title compound was prepared starting from **18** and aniline **29**. The residue was purified by FC (petroleum ether/EtOAc 1:1) to afford **74**. Yellowish solid; yield 46% (43 mg); mp 218-220 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.37 (bs, 9H), 1.52 (d, 1H, J = 8.2 Hz), 2.60-2.80 (m, 1H), 3.38-3.65 (m, 2H), 4.17 (d, 2H, J = 11.6 Hz), 4.25-4.40 (m, 2H), 6.70-6.88 (m, 2H, NH exch. with D₂O), 6.90-7.00 (m, 1H), 7.02-7.16 (m, 1H), 7.20-7.46 (m, 3H). Elemental analysis calculated (%) for C₂₀H₂₄ClN₄O₂: C 59.77, H 6.02, N 17.43. Found: C 60.85, H 6.17, N 17.69.

4.1.44. tert-Butyl 3-[6-(2,4-dichloroanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (75)

Title compound was prepared starting from **18** and aniline **30**. The residue was purified by FC (petroleum ether/EtOAc 1:1) to afford **75**. Yellowish solid; yield 41% (41 mg); mp 196-200 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.53 (d, 1H, J = 11.0 Hz), 2.60-2.80 (m, 1H), 3.38-3.70 (m, 2H), 4.18 (d, 2H, J = 11.6 Hz), 4.31 (d, 2H, J=6.2 Hz), 6.65 (bs, 1H, NH exch. with D₂O), 6.88 (d, 1H, J = 9.6 Hz), 6.98 (d, 1H, J = 9.4 Hz), 7.18 (d, 1H, J = 9.2 Hz), 7.30-7.46 (m, 1H), 8.36 (d, 1H, J = 8.8 Hz). Elemental analysis calculated (%) for C₂₀H₂₃Cl₂N₅O₂: C 55.05, H 5.31, N 16.05. Found: C 55.96, H 5.38, N 16.48.

4.1.45. tert-Butyl 3-[6-(3,4-dichloroanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (76)

Title compound was prepared starting from **18** and aniline **31**. The residue was purified by FC (petroleum ether/EtOAc 1:1) to afford **76**. White solid; yield 44% (44 mg); mp 168-172 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.52 (d, 1H, J = 8.4 Hz), 2.60-2.80 (m, 1H), 3.40-3.70 (m, 2H), 4.17 (d, 2H, J = 11.2 Hz), 4.31 (d, 2H, J = 5.6 Hz), 6.84 (d, 1H, J = 9.6 Hz), 7.00 (d, 1H, J = 9.0 Hz), 7.20-7.46 (m, 2H, NH exch. with D₂O), 7.55-7.80 (m, 2H). Elemental analysis calculated (%) for C₂₀H₂₃Cl₂N₅O₂: C 55.05, H 5.31, N 16.05. Found: C 55.78, H 5.36, N 16.31.

4.1.46. tert-Butyl 3-[6-(3,4-methylendioxyanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (77)

Title compound was prepared starting from **18** and aniline **32**. The residue was purified by FC (petroleum ether/EtOAc 4:6) to afford **77**. Yellowish solid; yield 42% (40 mg); mp 165-166 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.36 (bs, 9H), 1.52 (d, 1H, J = 9.4 Hz), 2.60-2.76 (m, 1H), 3.40-3.60 (m, 2H), 4.14 (d, 2H, J = 12.0 Hz), 4.30 (d, 2H, J = 4.8 Hz), 5.95 (s, 2H), 6.27 (bs, 1H, NH exch. with D₂O), 6.68-6.78 (m, 2H), 6.82 (s, 1H), 6.89-7.00 (m, 2H). Elemental analysis calculated (%) for C₂₁H₂₅N₅O₄: C 61.30, H 6.12, N 17.02. Found: C 62.06, H 6.14, N 17.35.

4.1.47. tert-Butyl 3-[6-(N-methylanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (78)

Title compound was prepared starting from **18** and aniline **33**. The residue was purified by FC (petroleum ether/EtOAc 1:1) to afford **78**. White solid; yield 60% (53 mg); mp 129-132 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.30-1.58 (m, 10H), 2.60-2.80 (m, 1H), 3.40-3.80 (m, 5H), 4.14 (d, 2H, J = 11.5 Hz), 4.29 (d, 2H, J = 8.8 Hz), 6.67 (d, 1H, J = 9.8 Hz), 6.89 (d, 1H, J = 10.0 Hz), 7.16 (d, 2H, J = 8.8 Hz), 7.20-7.43 (m, 3H). Elemental analysis calculated (%) for C₂₁H₂₇N₅O₂: C 66.12, H 7.13, N 18.36. Found: C 67.15, H 7.35, N 18.59.

4.1.48. General procedure for the preparation of final compounds 12a-o, 13a-o and 14a-o.

A solution of the appropriate Boc-protected derivative (34 – 78) (0.323 mmol) in HCOOH (2 mL) was stirred at room temperature for 20 h and then H₂O was added. The acid solution was extracted with CHCl₃, then basified with 10% K₂CO₃ aqueous solution and extracted with CHCl₃. The organic layer was dried (Na₂SO₄), filtered and concentrated under reduced pressure to afford the analytically pure product.

4.1.49. 3-(5-Anilinopyridin-3-yl)-3,6-diazabicyclo[3.1.1]heptane (12a)

General procedure was used to prepare title compound starting from **34**. Yellowish solid; yield 97% (83 mg); mp 179-182 °C. ¹H-NMR (200 MHz, CDCl₃) δ 1.45-1.80 (m, 2H, NH exch. with D₂O), 2.65-2.87 (m, 1H), 3.53 (bs, 4H), 3.89 (d, 2H, J = 5.2 Hz), 5.69 (bs, 1H, NH exch. with D₂O), 6.74 (s, 1H), 6.97 (t, 1H, J = 7.0 Hz), 7.11 (d, 2H, J = 8.0 Hz), 7.31 (d, 2H, J = 8.0 Hz), 7.70-7.90 (m, 2H). ¹³C-NMR (50 MHz, CDCl₃) δ 29.74 (CH₂), 49.52 (CH x 2), 54.11 (CH₂ x 2), 102.57 (CH), 115.97 (CH x 2), 118.92 (CH), 123.40 (C), 126.88 (CH), 127.78 (CH x 2), 138.96 (C), 141.72 (CH), 143.96 (C). IR (nujol) v: 3431 (NH). Elemental analysis calculated (%) for C₁₆H₁₈N₄: C 72.15, H 6.81, N 21.04. Found: C 72.20, H 6.82, N 21.10.

4.1.50. 3-[5-(4-Methylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (12b)

General procedure was used to prepare title compound starting from **35**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **12b**. Pink solid; yield 98% (89 mg); mp 218-221 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.45-1.80 (m, 2H, NH exch. with D₂O), 2.32 (s, 3H), 2.68-2.90 (m, 1H), 3.52 (bs, 4H), 3.88 (d, 2H, J = 4.8 Hz), 5.59 (bs, 1H, NH exch. with D₂O), 6.66 (s, 1H), 6.90-7.24 (m, 4H), 7.72 (s, 1H), 7.79 (s, 1H). 13 C-NMR (200 MHz, CDCl₃) δ = 20.71 (CH₃), 21.34 (CH₂), 51.19 (CH x 2), 55.79 (CH₂ x 2), 103.61 (CH), 118.05 (C), 119.13 (CH x 2), 125.33 (CH), 128.47 (CH), 129.96 (CH x 2), 131.87 (C), 139.98 (C), 145.32 (C). IR (nujol) v: 3431 (NH). Elemental analysis calculated (%) for C₁₇H₂₀N₄: C 72.83, H 7.192, N 19.98. Found: C 73.00, H 7.25, N 20.06.

4.1.51. 3-[5-(4-Methoxylanilino)pyridin-3-yl]-3.6-diazabicyclo[3.1.1]heptane (12c)

General procedure was used to prepare title compound starting from **36**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **12c**. White solid; yield 88% (84 mg); mp 189-191 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.46-1.78 (m, 2H, NH exch. with D₂O), 2.68-2.84 (m, 1H), 4.50 (bs, 4H), 3.81 (s, 3H), 3.87 (d, 2H, J = 5.8 Hz), 5.47 (bs, 1H, NH exch. with D₂O), 6.53 (s, 1H), 6.88 (d, 2H, J = 8.8 Hz), 7.11 (d, 2H, J = 8.8 Hz), 7.68 (d, 1H, J = 2.2 Hz), 7.72 (d, 1H, J = 2.2 Hz). ¹³C-NMR (200 MHz, CDCl₃) δ = 31.34 (CH₂), 54.62 (CH x 2), 55.71 (CH₃), 56.42 (CH₂ x 2),

107.31 (CH), 115.15 (CH x 2), 121.73 (CH x 2), 125.41 (CH), 126.75 (CH), 134.12 (C), 138.27 (C), 147.92 (C), 153.32 (C). IR (nujol) v: 3433 (NH). Elemental analysis calculated (%) for C₁₇H₂₀N₄O: C 68.89, H 6.80, N 18.90. Found: C 69.00, H 6.95, N 18.82.

4.1.52. 3-[5-(4-Ethoxylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (12d)

General procedure was used to prepare title compound starting from 37. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford 12d. White solid; yield 97% (97 mg); mp 199-203 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.30-1.52 (m, 4H, NH exch. with D₂O), 1.58 (d, 1H, J = 8.0 Hz), 2.65-2.95 (m, 1H), 3.49 (bs, 4H), 3.87 (d, 2H, J = 6.0 Hz), 4.02 (q, 2H, J = 6.6 Hz), 5.46 (bs, 1H, NH exch. with D₂O), 6.52 (s, 1H), 6.87 (d, 2H, J = 8.8 Hz), 7.09 (d, 2H, J = 8.8 Hz), 7.69 (d, 2H, J = 6.2 Hz). 13 C-NMR (200 MHz, CDCl₃) δ = 15.03 (CH₃), 36.05 (CH₂), 51.16 (CH x 2), 55.79 (CH₂ x 2), 63.79 (O-CH₂), 102.32 (CH), 115.33 (CH x 2), 118.07 (CH), 122.57 (CH x 2), 124.61 (CH), 127.50 (C), 138.29 (C), 141.19 (C), 154.96 (C). IR (nujol) v: 3433 (NH). Elemental analysis calculated (%) for C₁₈H₂₂N₄O: C 69.65, H 7.14, N 18.05. Found: C 69.75, H 7.17, N 18.15.

4.1.53. 3-(5-(4-chloroanilino)pyridin-3-yl)-3,6-diazabicyclo[3.1.1]heptane (12e)

General procedure was used to prepare title compound starting from **38**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **12e**. Yellowish solid; yield 93% (90 mg); mp 194-197 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.63 (bs, 2H, NH exch. with D₂O), 2.70-2.88 (m, 1H), 3.53 (bs, 4H), 3.89 (d, 2H, J = 5.8 Hz), 5.69 (bs, 1H, NH exch. with D₂O), 6.68 (s, 1H), 7.03 (d, 2H, J = 8.6 Hz), 7.24 (d, 2H, J = 8.6 Hz), 7.80 (d, 2H, J = 4.6 Hz). 13 C-NMR (200 MHz, CDCl₃) δ = 29.81 (CH₂), 49.98 (CH x 2), 54.53 (CH₂ x 2), 112.22 (CH), 117.43 (CH x 2), 123.27 (C), 124.38 (C), 127.96 (CH x 2), 135.71 (CH), 138.71 (C), 141.04 (CH), 144.31 (C). IR (nujol) v: 3433 (NH). Elemental analysis calculated (%) for C₁₆H₁₇ClN₄: C 63.89, H 5.70, N 18.63. Found: C 64.02, H 5.76, N 18.67.

4.1.54. 3-[5-(4-Fluoroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (12f)

General procedure was used to prepare title compound starting from **39**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **12f**. Beige solid; yield 94% (86 mg); mp 118-121 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.50-1.70 (m, 2H, NH exch. with D₂O), 2.70-2.90 (m, 1H), 3.51 (bs, 4H), 3.89 (d, 2H, J = 5.8 Hz), 5.58 (bs, 1H, NH exch. with D₂O), 6.59 (s, 1H), 6.80-7.20 (m, 4H), 7.70-7.95 (m, 2H). 13 C-NMR (200 MHz, CDCl₃) δ = 29.27 (CH₂), 49.02 (CH x 2), 53.58 (CH₂ x 2), 101.25 (CH), 113.65 (CH), 114.10 (CH), 117.51 (CH), 117.66 (CH), 122.78 (CH), 125.68 (CH), 137.58 (C), 139.00 (C), 143.62 (C), 152.74 (C). IR (nujol) v: 3435 (NH). Elemental analysis calculated (%) for C₁₆H₁₇FN₄: C 67.59, H 6.03, N 19.70. Found: C 67.63, H 6.09, N 19.77.

4.1.55. 3-[5-(4-Nitroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (12g)

General procedure was used to prepare title compound starting from **40**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **12g**. Yellowish solid; yield 82% (82 mg); mp 255-260 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.57 (bs, 2H, NH exch. with D₂O), 2.75-2.88 (m, 1H), 3.57 (bs, 4H), 3.85-4.05 (m, 2H), 6.20 (bs, 1H, NH exch. with D₂O), 6.82 (s, 1H), 6.99 (d, 2H, J = 9.0 Hz), 7.99 (d, 2H, J = 9.0 Hz), 8.15 (d, 2H, J = 9.0 Hz). ¹³C-NMR (200 MHz, CDCl₃) δ = 30.83 (CH₂), 59.59 (CH x 2), 54.82 (CH₂ x 2), 107.98 (CH), 113.64 (CH x 2), 126.18 (CH x 2), 128.09 (CH), 130.29 (C), 136.86 (CH), 138.12 (C), 145.48 (C), 150.79 (C). IR (nujol) v: 3441 (NH); 1652, 1339 (NO₂). Elemental analysis calculated (%) for C₁₆H₁₇N₅O₂: C 61.72, H 5.50, N 22.49. Found: C 61.82, H 5.56, N 22.60.

4.1.56. 3-[5-(4-Hydroxyanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (12h)

General procedure was used to prepare title compound starting from **41**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **12h**. Red solid; yield 67% (61 mg). ¹H-NMR (200 MHz, CDCl₃) δ = 1.60-2.20 (m, 3H, NH e OH exch. with D₂O), 2.70-2.90 (m, 1H), 3.45-3.63 (m, 4H), 3.92 (d, 2H, J = 5.8 Hz), 5.56 (bs, 1H, NH exch. with D₂O), 6.49 (s, 1H), 6.81 (d, 2H, J = 8.8 Hz), 7.03 (d, 2H, J = 8.8 Hz), 7.60-7.78 (m, 2H). IR (nujol) v: 3441 (NH). Elemental analysis calculated (%) for C₁₆H₁₈N₄O: C 68.06, H 6.43, N 19.84. Found: C 68.16, H 6.50, N 19.91.

4.1.57. 3-[5-(4-Trifluoromethylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (12i)

General procedure was used to prepare title compound starting from **42**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **12i**. Yellowish solid; yield 49% (53 mg); mp 176-180 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.57 1.63 (d, 1H, J = 8.4Hz), 1.66-1.98 (m, 1H, NH exch. with D₂O), 2.70-2.90 (m, 1H), 3.55 (bs, 4H), 3.93 (d, 2H, J = 5.8 Hz), 5.98 (bs, 1H, NH exch. with D₂O), 6.79 (s, 1H), 7.09 (d, 2H, J = 8.0 Hz), 7.50 (d, 2H, J = 7.4 Hz), 7.88 (d, 2H, J = 6.2 Hz). ¹³C-NMR (200 MHz, CDCl₃) δ = 29.98 (CH₂), 48.98 (CH x 2), 53.93 (CH₂ x 2), 111.53 (CH x 4), 113.46 (CH x 2), 124.78 (CH), 128.27 (C), 143.66 (C), 146.23 (C), 147.55 (C). IR (nujol) v: 3432 (NH). Elemental analysis calculated (%) for C₁₇H₁₇F₃N₄: C 61.07, H 5.13, N 16.76. Found: C 61.20, H 5.19, N 17.12.

4.1.58. 3-[5-(2-Chloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (12j)

General procedure was used to prepare title compound starting from **43**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **12j**. Yellowish solid; yield 86% (84 mg); mp 205-207 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.62 (d, 1H, J = 8.8 Hz), 1.68 (bs, 1H, NH exch. with D₂O), 2.65-2.90 (m, 1H), 3.55 (bs, 4H), 3.91 (d, 2H, J = 5.6 Hz), 6.03 (bs, 1H, NH exch. with D₂O), 6.70-6.90 (m, 2H), 7.15 (t, 1H, J = 8.0 Hz), 7.20-7.45 (m, 2H), 7.80-7.90 (m, 1H), 7.91-8.05 (m, 1H). 13 C-NMR (200 MHz, CDCl₃) δ = 27.51 (CH₂), 4.69 (CH x 2), 53.73 (CH₂ x 2), 104.29 (CH), 119.84 (CH), 121.98 (CH), 125.78 (CH x 2), 127.35 (CH), 128.20 (CH), 129.98 (C), 131.24 (C), 138.28 (C), 143.36 (C). IR (nujol) v: 3438 (NH). Elemental analysis calculated (%) for C₁₆H₁₇ClN₄: C 63.89, H 5.70, N 18.63. Found: C 64.01, H 5.75, N 18.69.

4.1.59. 3-[5-(3-Chloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (12k)

General procedure was used to prepare title compound starting from 44. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford 12k. Beige solid; yield 92% (89 mg); mp 195-198 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.50-1.70 (m, 2H, NH exch. with D₂O), 2.70-2.88 (m, 1H), 3.53 (bs, 4H), 3.90 (d, 2H, J = 5.8 Hz), 5.75 (bs, 1H, NH exch. with D₂O), 6.75 (s, 1H), 6.92 (t, 2H, J =

6.2 Hz), 7.07 (s, 1H), 7.17 (d, 2H, J = 8.2 Hz), 7.70-7.95 (m, 2H). 13 C-NMR (200 MHz, CDCl₃) δ = 29.78 (CH₂), 49.53 (CH x 2), 54.09 (CH₂ x 2), 104.03 (CH), 113.29 (CH), 114.75 (CH), 118.03 (CH), 124.47 (C), 127.62 (C), 128.93 (CH), 132.96 (CH), 137.94 (C), 143.76 (CH), 144.00 (C). IR (nujol) v: 3438 (NH). Elemental analysis calculated (%) for C₁₆H₁₇ClN₄: C 63.89, H 5.70, N 18.63. Found: C 63.20, H 5.65, N 18.60.

4.1.60. 3-[5-(2,4-Dichloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (12l)

General procedure was used to prepare title compound starting from **45**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **121**. Beige solid; yield 84% (91 mg); mp 176-179 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.64 (bs, 2H, NH exch. with D₂O), 2.70-2.90 (m, 1H), 3.55 (bs, 4H), 3.92 (d, 2H, J = 5.6 Hz), 5.98 (bs, 1H, NH exch. with D₂O), 6.73 (s, 1H), 7.00-7.24 (m, 2H), 7.38 (d, 1H, J = 2.2 Hz), 7.90 (s, 2H). ¹³C-NMR (200 MHz, CDCl₃) δ = 30.64 (CH₂), 50.51 (CH x 2), 55.16 (CH₂ x 2), 106.92 (CH), 116.78 (CH), 122.30 (CH), 124.27 (C), 127.00 (C), 127.02 (CH), 128.86 (CH), 129.83 (C), 139.90 (C), 138.43 (C), 144.88 (C). IR (nujol) v: 3428 (NH). Elemental analysis calculated (%) for C₁₆H₁₆Cl₂N₄: C 57.33, H 4.81, N 16.71. Found: C 57.41, H 4.83, N 16.80.

4.1.61. 3-[5-(3,4-Dichloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (12m)

General procedure was used to prepare title compound starting from **46**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **12m**. Beige solid; yield 82% (89 mg); mp 217-220 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.59 (bs, 2H, NH exch. with D₂O), 2.70-2.88 (m, 1H), 3.54 (bs, 4H), 3.92 (d, 2H, J = 6.2 Hz), 5.68 (bs, 1H, NH exch. with D₂O), 6.69 (s, 1H), 6.80-6.95 (m, 1H), 7.10-7.20 (m, 1H), 7.21-7.34 (m, 1H), 7.70-7.95 (m, 2H). ¹³C-NMR (200 MHz, CDCl₃) δ = 30.29 (CH₂), 50.11 (CH x 2), 54.77 (CH₂ x 2), 104.86 (CH), 115.30 (C), 116.91 (CH), 120.89 (CH), 125.47 (C), 128.56 (C), 129.72 (CH), 131.50 (CH), 138.20 (C), 141.72 (CH), 142.78 (C). IR (nujol) v: 3428 (NH). Elemental analysis calculated (%) for C₁₆H₁₆Cl₂N₄: C 57.33, H 4.81, N 16.71. Found: C 57.40, H 4.87, N 16.73.

4.1.62. 3-[5-(3,4-Methylendioxyanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (12n)

General procedure was used to prepare title compound starting from 47. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford 12n. Beige solid; yield 90% (90 mg); mp 174-175 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.60 (d, 1H, J = 8.8 Hz), 1.77 (bs, 1H, NH exch. with D₂O), 2.70-2.90 (m, 1H), 3.51 (bs, 4H), 3.90 (d, 2H, J = 5.8 Hz), 5.54 (bs, 1H, NH exch. with D₂O), 5.96 (s, 2H), 6.50-6.63 (m, 2H), 6.77-6.81 (m, 2H), 7.65-7.78 (m, 2H). 13 C-NMR (200 MHz, CDCl₃) δ = 30.66 (CH₂), 50.35 (CH x 2), 55.04 (CH₂ x 2), 110.82 (CH₂), 102.16 (C), 108.63 (CH), 110.99 (CH), 112.92 (C), 124.00 (C), 126.65 (C), 137.37 (CH), 141.18 (CH), 141.50 (CH), 145.33 (C), 147.78 (CH). IR (nujol) v: 3434 (NH). Elemental analysis calculated (%) for C₁₇H₁₈N₄O₂: C 65.79, H 5.85, N 18.05. Found: C 65.82, H 5.90, N 18.14.

4.1.63. 3-[5-(N-Methylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (120)

General procedure was used to prepare title compound starting from **48**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **120**. White solid; yield 93% (84 mg); mp 110-112 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.62 (bs, 2H, NH exch. with D₂O), 2.68-2.88 (m, 1H), 3.35 (s, 3H), 3.50 (bs, 4H), 3.87 (d, 2H, J = 6.4 Hz), 6.58 (s, 1H), 6.96-7.06 (m, 1H), 7.07 (d, 2H, J = 8.8 Hz), 7.33 (d, 2H, J = 8.8 Hz), 7.9 (s, 2H). 13 C-NMR (200 MHz, CDCl₃) δ = 29.96 (CH₂), 42.60 (CH₃), 49.07 (CH x 2), 55.54 (CH₂ x 2), 114.74 (CH), 117.57 (C), 121.82 (CH x 2), 121.96 (CH), 130.10 (CH x 2), 131.11 (CH), 137.32 (C), 148.97 (CH), 150.15 (C). IR (nujol) v: 3421 (NH). Elemental analysis calculated (%) for C₁₇H₂₀N₄: C 72.83, H 7.19, N 19.98. Found: C 72.94, H 7.22, N 20.00.

4.1.64. 3-(6-Anilinopyridin-3-yl)-3,6-diazabicyclo[3.1.1]heptane (13a)

General procedure was used to prepare title compound starting from **49**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **13a**. Beige solid; yield 95% (82 mg); mp 165-167 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.40-1.88 (m, 2H, NH exch. with D₂O), 2.65-2.85 (m, 1H), 3.40-3.80 (m, 4H), 3.80-4.10 (m, 2H), 6.23 (bs, 1H, NH exch. with D₂O), 6.84-7.18 (m, 3H), 7.20-7.48

(m, 4H), 7.76-7.85 (m, 1H). 13 C-NMR (200 MHz, CDCl₃) δ = 30.01 (CH₂), 50.05 (CH x 2), 54.68 (CH₂ x 2), 110.52 (CH), 115.53 (CH x 2), 117.27 (CH), 118.25 (C), 119.00 (CH), 127.64 (CH x 2), 138.17 (C), 141.92 (CH), 146.03 (C). IR (nujol) v: 3422 (NH). Elemental analysis calculated (%) for C₁₆H₁₈N₄: C 72.15, H 6.81, N 21.04. Found: C 72.20, H 6.85, N 21.11.

4.1.65. 3-[6-(4-Methylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane-6-carboxylate (13b)

General procedure was used to prepare title compound starting from **50**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **13b**. White solid; yield 95% (86 mg); mp 175-177 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.63 (bs, 2H, NH exch. with D₂O), 2.30 (s, 3H), 2.65-2.85 (m, 1H), 3.51 (q, 4H, J = 10.4 Hz), 3.89 (d, 2H, J = 5.8 Hz), 6.13 (bs, 1H, NH exch. with D₂O), 6.80-7.20 (m, 5H), 7.77 (d, 2H, J = 2.8 HZ). 13 C-NMR (200 MHz, CDCl₃) δ = 20.66 (CH₃), 31.08 (CH₂), 51.40 (CH x 2), 55.93 (CH₂ x 2), 110.07 (CH), 118.03 (CH), 118.44 (CH x 2), 120.01 (CH), 129.68 (CH x 2), 130.58 (C), 139.51 (C), 139.69 (C), 147.43 (C). IR (nujol) v: 3422 (NH). Elemental analysis calculated (%) for C₁₇H₂₀N₄: C 72.83, H 7.19, N 19.98. Found: C 72.92, H 7.15, N 20.02. *4.1.66*. *3-[6-(4-Methoxylanilino)pyridin-3-vl]-3,6-diazabicyclo[3.1.1]heptane (13c)*

General procedure was used to prepare title compound starting from **51**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **13c**. Yellowish solid; yield 93% (89 mg); mp 141-143 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.66 (d, 1H, J = 8.8 Hz), 1.94 (bs, 1H, NH exch. with D₂O), 2.65-2.85 (m, 1H), 3.50 (q, 4H, J = 6.8 Hz), 3.80 (s, 3H), 3.87-4.05 (m, 2H), 6.18 (bs, 1H, NH exch. with D₂O), 6.80 (d, 1H, J = 9.0 Hz), 6.86 (d, 2H, J = 9.0 Hz), 7.00 (dd, 1H, J_o = 3.2 Hz, J_m = 9.0 Hz), 7.17 (d, 1H, J = 8.8 Hz), 7.65-7.80 (m, 1H). ¹³C-NMR (200 MHz, CDCl₃) δ = 30.52 (CH₂), 50.50 (CH x 2), 54.91 (CH₃), 55.33 (CH₂ x 2), 110.36 (CH), 113.57 (CH x 2), 118.14 (CH x 2), 120.03 (CH), 128.08 (C), 136.23 (CH), 138.25 (C), 147.71 (C), 152.52 (C). IR (nujol) v: 3427 (NH). Elemental analysis calculated (%) for C₁₇H₂₀N₄O: C 68.89, H 6.80, N 18.90. Found: C 69.00, H 6.85, N 18.98.

4.1.67. 3-[6-(4-Ethoxylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (13d)

General procedure was used to prepare title compound starting from **52**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **13d**. Yellowish solid; yield 95% (95 mg); mp 126-128 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.41 (t, 3H, J = 7.0 Hz), 1.65 (d, 1H, J = 8.4 Hz), 1.89 (bs, 1H, NH exch. with D₂O), 2.60-2.80 (m, 1H), 3.50 (q, 4H, J = 7.4 Hz), 3.80-3.97 (m, 2H), 4.01 (q, 2H, J = 7.0 Hz), 6.12 (bs, 1H, NH exch. with D₂O), 6.70-6.90 (m, 3H), 6.99 (dd, 1H, J_o = 2.8 Hz, J_m = 8.8 Hz), 7.15 (d, 2H, J= 9.0 Hz), 7.68-7.80 (m, 1H). ¹³C-NMR (200 MHz, CDCl₃) δ = 14.89 (CH₃), 31.00 (CH₂), 51.30 (CH x 2), 55.94 (CH₂ x 2), 63.74 (O-CH₂), 109.24 (CH), 115.19 (CH x 2), 120.29 (CH), 121.41 (CH x 2), 129.57 (CH), 135.22 (C), 139.13 (C), 148.50 (C), 154.24 (C). IR (nujol) v: 3427 (NH). Elemental analysis calculated (%) for C₁₈H₂₂N₄O: C 69.65, H 7.14, N 18.05. Found: C 69.79, H 7.21, N 18.13.

4.1.68. 3-[6-(4-Chloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (13e)

General procedure was used to prepare title compound starting from **53**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **13e**. Beige solid; yield 89% (86 mg); mp 156-157 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.58 (bs, 1H, NH exch. with D₂O), 1.65 (d, 1H, J = 8.4 Hz), 2.65-2.85 (m, 1H), 3.52 (q, 4H, J = 5.4 Hz), 3.80-3.95 (m, 2H), 6.18 (bs, 1H, NH exch. with D₂O), 6.89 (d, 2H, J = 8.8 Hz), 7.03 (dd, 1H, J_o = 2.8 Hz, J_m = 9.2 Hz), 7.10-7.40 (m, 3H), 7.70-7.85 (m, 1H). ¹³C-NMR (200 MHz, CDCl₃) δ = 30.79 (CH₂), 50.99 (CH x 2), 55.58 (CH₂ x 2), 111.32 (CH), 117.83 (CH x 2), 119.78 (CH), 123.93 (C), 128.46 (CH x 2), 128.95 (CH), 139.42 (C), 141.10 (C), 146.20 (C). IR (nujol) v: 3425 (NH). Elemental analysis calculated (%) for C₁₆H₁₇ClN₄: C 63.89, H 5.70, N 18.63. Found: C 63.97, H 5.76, N 18.60.

4.1.69. 3-[6-(4-Fluoroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (13f)

General procedure was used to prepare title compound starting from **54**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **13f**. Beige solid; yield 93% (85 mg); mp 162-163 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.40-1.58 (bs, 1H, NH exch. with D₂O), 1.64 (d, 1H, J = 8.6 Hz), 2.60-2.88 (m, 1H), 3.50 (q, 4H, J = 10.8 Hz), 3.88 (d, 2H, J = 5.4 Hz), 6.30 (bs, 1H, NH exch. with

D₂O), 6.83 (d, 1H, J = 8.8 Hz), 6.87-7.12 (m, 2H), 7.13-7.30 (m, 2H), 7.70-7.90 (m, 2H). ¹³C-NMR (200 MHz, CDCl₃) δ = 31.07 (CH₂), 51.34 (CH x 2), 55.89 (CH₂ x 2), 110.26 (CH), 115.43 (CH), 115.87 (CH), 119.68 (CH), 119.83 (CH), 120.11 (CH), 129.62 (CH), 138.20 (C), 138.39 (C), 139.66 (C), 147.24 (C). IR (nujol) v: 3429 (NH). Elemental analysis calculated (%) for C₁₆H₁₇FN₄: C 67.59, H 6.03, N 19.70. Found: C 67.93, H 6.11, N 19.78.

4.1.70. 3-[6-(4-Nitroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (13g)

General procedure was used to prepare title compound starting from **55**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **13g**. Red solid; yield 96% (96 mg); mp 205-206 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.55-1.78 (m, 2H, NH exch. with D₂O), 2.70-2.90 (m, 1H), 3.50-3.70 (m, 4H), 3.93 (d, 2H, J = 5.6 Hz), 6.83 (bs, 1H, NH exch. with D₂O), 6.98 (d, 1H, J = 9.9 Hz), 7.08 (dd, 1H, J_o = 3.2 Hz, J_m = 9.0 Hz), 7.29 (d, 2H, J=9.6 Hz), 7.80-7.95 (m, 1H), 8.15 (d, 2H, J=9.2 Hz). 13 C-NMR (200 MHz, CDCl₃) δ = 29.76 (CH₂), 49.68 (CH x 2), 54.20 (CH₂ x 2), 112.39 (CH), 113.22 (CH x 2), 118.47 (CH), 124.07 (CH x 2), 127.32 (C), 136.85 (C), 139.31 (C), 143.48 (C), 148.15 (CH). IR (nujol) v: 3434 (NH); 1655, 1342 (NO₂). Elemental analysis calculated (%) for C₁₆H₁₇N₅O₂: C 61.72, H 5.50, N 22.49. Found: C 61.81, H 5.55, N 22.52.

4.1.71. 3-[6-(4-Hydroxyanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (13h)

General procedure was used to prepare title compound starting from **56**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **13h**. Beige solid; yield 78% (71 mg); mp 218-220 °C. 1 H-NMR (200 MHz, CDCl₃) δ = 1.30 (bs, 2H, NH e OH exch. with D₂O), 1.70-1.80 (m, 1H), 2.70-2.85 (m, 1H), 3.32 (bs, 4H), 3.37-3.62 (m, 2H), 6.70-6.85 (m, 3H, NH exch. with D₂O), 7.00-7.18 (m, 3H), 7.70-7.92 (m, 2H). IR (nujol) v: 3445 (NH, OH). Elemental analysis calculated (%) for C₁₆H₁₈N₄O: C 68.06, H 6.43, N 19.84. Found: C 68.20, H 6.43, N 19.80.

4.1.72. 3-[6-(4-Trifluoromethylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (13i)

General procedure was used to prepare title compound starting from **57**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **13i**. Beige solid; yield 81% (87 mg); mp 156-157 °C.

¹H-NMR (200 MHz, CDCl₃) δ = 1.49 (bs, 1H, NH exch. with D₂O), 1.65 (d, 1H, J = 9.0Hz), 2.65-2.85 (m, 1H), 3.40-3.80 (m, 4H), 3.91 (d, 2H, J = 5.6 Hz), 6.42 (bs, 1H, NH exch. with D₂O), 6.96 (d, 1H, J = 8.6 Hz), 7.00-7.15 (m, 1H), 7.28 (d, 2H, J = 8.4 Hz), 7.48 (d, 2H, J = 8.6 Hz), 7.80-7.95 (m, 1H). ¹³C-NMR (200 MHz, CDCl₃) δ = 30.61 (CH₂), 50.68 (CH x 2), 55.38 (CH₂ x 2), 112.36 (CH), 114.97 (CH x 2), 117.75 (CH x 2), 119.53 (CH), 125.64 (CH), 128.64 (C), 139.62 (C), 145.00 (C), 145.67 (C), 150.23 (C). IR (nujol) v: 3428 (NH). Elemental analysis calculated (%) for C₁₇H₂₁₇F₃N₄: C 61.07, H 5.13, N 16.76. Found: C 61.19, H 5.20, N 16.66.

4.1.73. 3-[6-(2-Chloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (13j)

General procedure was used to prepare title compound starting from **58**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **13j**. Yellowish solid; yield 89% (86 mg); mp 153-155 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.66 (d, 1H, J = 6.6 Hz), 1.76 (bs, 1H, NH exch. with D₂O), 2.65-2.85 (m, 1H), 3.55 (q, 4H, J = 6.8 Hz), 3.92 (d, 2H, J = 3.0 Hz), 6.60 (bs, 1H, NH exch. with D₂O), 6.82 (t, 1H, J = 5.2 Hz), 6.96 (d, 1H, J = 6.0 Hz), 7.05 (dd, 1H, J_o = 2.0 Hz, J_m = 5.8 Hz), 7.17 (t, 1H, J = 6.0 Hz), 7.35 (dd, 1H, J_o = 1.2 Hz, J_m = 5.8 Hz), 7.70-7.95 (m, 2H). ¹³C-NMR (200 MHz, CDCl₃) δ = 24.85 (CH₂), 43.97 (CH x 2), 52.07 (CH₂ x 2), 107.93 (CH), 112.90 (CH x 2), 115.66 (CH), 116.56 (CH), 122.29 (CH), 124.29 (CH), 125.15 (C), 133.55 (C), 134.27 (C), 140.92 (C). IR (nujol) v: 3424 (NH). Elemental analysis calculated (%) for C₁₆H₁₇ClN₄: C 63.89, H 5.70, N 18.63. Found: C 63.96, H 5.75, N 18.69.

4.1.74. 3-[6-(3-Chloroanilino)pyridin-3-yl]-3.6-diazabicyclo[3.1.1]heptane (13k)

General procedure was used to prepare title compound starting from **59**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **13k**. Yellowish solid; yield 92% (89 mg); mp 156-158 °C. ¹H-NMR (200 MHz, CDCl₃) δ = 1.45 (bs, 1H, NH exch. with D₂O), 1.64 (d, 1H, J = 8.8 Hz), 2.65-2.85 (m, 1H), 3.38-3.60 (m, 4H), 3.90 (d, 2H, J = 4.8 Hz), 6.48 (bs, 1H, NH exch. with D₂O), 6.86 (dd, 1H, J_o = 1.2 Hz, J_m = 7.6 Hz), 6.89-7.08 (m, 2H), 7.10-7.22 (m, 2H), 7.25-7.32 (m, 1H), 7.82 (d, 1H, J = 2.4 Hz). ¹³C-NMR (200 MHz, CDCl₃) δ = 31.11 (CH₂), 51.30 (CH x 2), 55.86

(CH₂ x 2), 111.78 (CH), 114.99 (CH), 116.45 (CH), 119.86 (CH), 120.17 (CH), 129.75 (CH), 130.06 (CH), 134.70 (C), 140.23 (C), 143.87 (C), 145.65 (C). IR (nujol) v: 3424 (NH). Elemental analysis calculated (%) for C₁₆H₁₇ClN₄: C 63.89, H 5.70, N 18.63. Found: C 64.00, H 5.73, N 18.68.

4.1.75. 3-[6-(2,4-Dichloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (131)

General procedure was used to prepare title compound starting from **60**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **13l**. Beige solid; yield 64% (69 mg); mp 105-106 °C. 1 H-NMR (200 MHz, CDCl₃) δ 1.53 (bs, 1H, NH exch. with D₂O), 1.65 (d, 1H, J = 8.4 Hz), 2.70-2.90 (m, 1H), 3.40-3.80 (m, 4H), 3.85-4.05 (m, 2H), 6.55 (bs, 1H, NH exch. with D₂O), 6.90 (d, 1H, J = 8.6 Hz), 7.00-7.25 (m, 2H), 7.34 (d, 1H, J = 2.4 Hz), 7.78-8.10 (m, 2H). 13 C-NMR (200 MHz, CDCl₃) δ = 30.99 (CH₂), 51.05 (CH x 2), 55.95 (CH₂ x 2), 112.91 (CH), 116.96 (CH), 119.90 (CH), 121.22 (C), 123.97 (C), 127.40 (CH), 128.75 (CH), 129.55 (CH), 137.77 (C), 140.44 (C), 144.97 (C). IR (nujol) v: 3422 (NH). Elemental analysis calculated (%) for C₁₆H₁₆Cl₂N₄: C 57.33, H 4.81, N 16.71. Found: C 57.40, H 4.88, N 16.69.

4.1.76. 3-[6-(3,4-Dichloroanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (13m)

General procedure was used to prepare title compound starting from **61**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **13m**. Grey solid; yield 83% (90 mg); mp 186-187 °C. 1 H-NMR (200 MHz, CDCl₃) δ 1.53 (bs, 1H, NH exch. with D₂O), 1.65 (d, 1H, J = 8.8 Hz), 2.70-2.89 (m, 1H), 3.40-3.70 (m, 4H), 3.91 (d, 2H, J = 4.6 Hz), 6.20 (bs, 1H, NH exch. with D₂O), 6.87 (d, 1H, J = 9.0 Hz), 7.00-7.18 (m, 2H), 7.28 (d, 1H, J = 8.6 Hz), 7.46 (d, 1H, J = 2.8 Hz), 7.82 (d, 1H, J=2.8 Hz). 13 C-NMR (200 MHz, CDCl₃) δ = 29.86 (CH₂), 49.45 (CH x 2), 55.94 (CH₂ x 2), 112.31 (CH), 116.30 (CH), 116.39 (CH), 119.04 (C), 120.90 (CH), 128.34 (C), 130.17 (CH), 130.78 (CH), 139.18 (C), 143.11 (C), 146.32 (C). IR (nujol) v: 3422 (NH). Elemental analysis calculated (%) for C₁₆H₁₆Cl₂N₄: C 57.33, H 4.81, N 16.71. Found: C 57.41, H 4.86, N 16.75. 4.1.77. 3-[6-(3,4-Methylendioxyanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (**13n**)

General procedure was used to prepare title compound starting from **62**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **13n**. Beige solid; yield 93% (93 mg); mp 172-173 °C. ¹H-NMR (200 MHz, CDCl₃) δ 11.60-1.80 (m, 2H, NH exch. with D₂O), 2.70-2.85 (m, 1H), 3.50 (q, 4H, J = 10.4 Hz), 3.89 (d, 2H, J = 5.8 Hz), 5.93 (s, 2H), 6.06 (bs, 1H, NH exch. with D₂O), 6.62 (dd, 1H, J_o = 8.4 Hz, J_m = 2.2 Hz), 6.72 (s, 1H), 6.76 (s, 1H), 6.79 (s, 1H), 6.81-6.92 (m, 1H), 7.00 (dd, 1H, J_o = 8.4 Hz, J_m = 3.0 Hz), 7.74 (d, 1H, J = 2.4 Hz). ¹³C-NMR (200 MHz, CDCl₃) δ = 31.04 (CH₂), 51.16 (CH x 2), 55.71 (CH₂ x 2), 99.47 (CH), 100.82 (CH), 109.06 (CH), 111.73 (C), 113.40 (CH₂, C), 121.14 (CH), 138.60 (C), 139.38 (C), 140.29 (C), 147.57 (CH), 147.91 (C). IR (nujol) v: 3430 (NH). Elemental analysis calculated (%) for C₁₇H₁₈N₄O₂: C 65.79, H 5.85, N 18.05. Found: C 65.87, H 5.90, N 18.09.

4.1.78. 3-[6-(N-methylanilino)pyridin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (130)

General procedure was used to prepare title compound starting from **63**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **130**. White solid; yield 96% (87 mg); mp 94-95 °C. 1 H-NMR (200 MHz, CDCl₃) δ 1.55-1.78 (m, 2H, NH exch. with D₂O), 2.70-2.90 (m, 1H), 3.43 (s, 3H), 3.47-3.68 (m, 4H), 3.91 (d, 2H, J = 6.6 Hz), 6.84 (d, 1H, J = 8.8 Hz), 6.87-7.04 (m, 2H), 7.11 (d, 2H, J = 7.6 Hz), 7.31 (d, 2H, J = 8.6 Hz), 7.80-7.95 (m, 1H). 13 C-NMR (200 MHz, CDCl₃) δ = 29.56 (CH₂), 41.60 (CH₃), 48.97 (CH x 2), 56.54 (CH₂ x 2), 113.74 (CH), 119.87 (C), 120.42 (CH x 2), 121.32 (CH), 129.10 (CH x 2), 129.91 (CH), 139.32 (C), 147.97 (CH), 150.08 (C). IR (nujol) v: 3421 (NH). Elemental analysis calculated (%) for C₁₇H₂₀N₄: C 72.83, H 7.19, N 19.98. Found: C 72.90, H 7.24, N 19.92.

4.1.79. 3-(6-Anilinopyridazin-3-yl)-3,6-diazabicyclo[3.1.1]heptane (14a)

General procedure was used to prepare title compound starting from **64**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **14a**. Yellowish solid; yield 94% (81 mg); mp 154-157 °C. 1 H-NMR (200 MHz, CDCl₃) δ 1.40-1.80 (m, 2H, NH exch. with D₂O), 2.70-2.90 (m, 1H), 3.60-3.90 (m, 4H), 3.92 (d, 2H, J = 5.8 Hz), 6.47 (bs, 1H, NH exch. with D₂O), 6.83 (d, 1H, J = 9.2)

Hz), 6.90-7.05 (m, 1H), 7.10 (d, 1H, J = 9.4 Hz), 7.25-7.45 (m, 4H). 13 C-NMR (200 MHz, CDCl₃) δ = 32.19 (CH₂), 49.95 (CH x 2), 54.97 (CH₂ x 2), 114.24 (C), 116.86 (CH x 2), 119.42 (C), 119.70 (CH), 128.51 (CH x 2), 142.16 (CH), 151.22 (CH), 154.94 (CH). IR (nujol) v: 3388 (NH). Elemental analysis calculated (%) for C₁₅H₁₇N₅: C 67.39, H 6.41, N 26.20. Found: C 67.45, H 6.49, N 26.16.

4.1.80. 3-[6-(4-Methylanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (14b)

General procedure was used to prepare title compound starting from **65**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **14b**. Yellowish solid; yield 98% (89 mg); mp 114-116 °C. ¹H-NMR (200 MHz, CDCl₃) δ 1.40-180 (m, 2H, NH exch. with D₂O), 2.32 (s, 3H), 2.68-2.90 (m, 1H), 3.76 (bs, 4H), 3.92 (d, 2H, J = 7.6 Hz), 6.41 (bs, 1H, NH exch. with D₂O), 6.81 (d, 1H, J = 9.8 Hz), 7.00-7.25 (m, 5H). ¹³C-NMR (200 MHz, CDCl₃) δ = 20.68 (CH₃), 31.09 (CH₂), 50.58 (CH x 2), 55.79 (CH₂ x 2), 113.62 (CH), 118.32 (CH), 119.08 (CH x 2), 129.71 (CH x 2), 131.41 (C), 138.65 (C), 151.81 (C), 155.44 (C). IR (nujol) v: 3388 (NH). Elemental analysis calculated (%) for C₁₆H₁₉N₅: C 68.30, H 6.81, N 24.89. Found: C 68.41, H 6.83, N 24.85.

4.1.81. 3-[6-(4-Methoxylanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (14c)

General procedure was used to prepare title compound starting from **66**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **14c**. Yellowish solid; yield 87% (84 mg); mp 145-146 °C. ¹H-NMR (200 MHz, CDCl₃) δ 1.45-1.78 (m, 2H, NH exch. with D₂O), 2.60-2.80 (m, 1H), 3.70-3.88 (m, 4H), 3.80 (s, 3H), 3.92 (d, 2H, J = 9.4 Hz), 6.28 (bs, 1H, NH scambia con D₂O), 6.78 (d, 1H, J = 9.6 Hz), 6.87 (d, 2H, J = 9.0 Hz), 6.96 (d, 1H, J = 9.6 Hz), 7.24 (d, 2H, J = 9.0 Hz). ¹³C-NMR (200 MHz, CDCl₃) δ = 30.16 (CH₂), 49.45 (CH x 2), 54.59 (CH₃), 54.90 (CH₂ x 2), 113.14 (CH x 2), 117.45 (C), 118.67 (CH), 119.01 (CH x 2), 134.36 (CH), 151.21 (C), 152.98 (C), 153.90 (C). IR (nujol) v: 3383 (NH). Elemental analysis calculated (%) for C₁₆H₁₉N₅O: C 64.63, H 6.44, N 23.55. Found: C 64.70, H 6.50, N 23.60.

4.1.82. 3-[6-(4-Ethoxylanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (14d)

General procedure was used to prepare title compound starting from **67**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **14d**. Yellowish solid; yield 89% (90 mg); mp 145-147 °C. ¹H-NMR (200 MHz, CDCl₃) δ 1.41 (t, 3H, J = 7.0 Hz), 1.50-1.80 (m, 2H, NH exch. with D₂O), 2.60-2.80 (m, 1H), 3.60-3.88 (m, 4H), 3.91 (d, 2H, J = 8.4 Hz), 4.02 (q, 2H, J = 6.8 Hz), 6.30 (bs, 1H, NH exch. with D₂O), 6.78 (d, 1H, J = 9.8 Hz), 6.86 (d, 2H, J = 8.6 Hz), 6.96 (d, 1H, J = 9.8 Hz), 7.23 (d, 2H, J = 8.8 Hz). ¹³C-NMR (200 MHz, CDCl₃) δ = 14.85 (CH₃), 31.04 (CH₂), 50.53 (CH x 2), 55.78 (CH₂ x 2), 63.71 (O-CH₂), 113.81 (CH), 115.11 (CH x 2), 118.02 (CH), 121.85 (CH x 2), 134.16 (C), 152.46 (C), 154.62 (C), 155.27 (C). IR (nujol) v: 3383 (NH). Elemental analysis calculated (%) for C₁₇H₂₁N₅O: C 65.57, H 6.80, N 22.49. Found: C 65.53, H 6.85, N 22.56. 4.1.83. 3-[6-(4-Chloroanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (14e)

General procedure was used to prepare title compound starting from **68**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **14e**. Beige solid; yield 85% (83 mg); mp 214-215 °C. 1 H-NMR (200 MHz, CDCl₃) δ 1.64 (bs, 2H, NH exch. with D₂O), 2.60-2.80 (m, 1H), 3.70-3.85 (m, 4H), 3.92 (d, 2H, J =11.0 Hz), 6.44 (bs, 1H, NH exch. with D₂O), 6.85 (d, 1H, J = 9.8 Hz), 7.02 (d, 1H, J = 9.8 Hz), 7.18-7.45 (m, 4H). 13 C-NMR (200 MHz, CDCl₃) δ = 30.45 (CH₂), 49.81 (CH x 2), 55.02 (CH₂ x 2), 113.42 (CH), 118.14 (CH x 2), 119.53 (CH), 123.58 (C), 127.76 (CH x 2), 139.97 (C), 150.69 (C), 154.38 (C). IR (nujol) v: 3392 (NH). Elemental analysis calculated (%) for C₁₅H₁₆ClN₅: C 59.70, H 5.34, N 23.21. Found: C 59.83, H 5.36, N 23.18.

4.1.84. 3-[6-(4-Fluoroanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (14f)

General procedure was used to prepare title compound starting from **69**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **14f**. Yellowish solid; yield 85% (78 mg); mp 204-205 °C. 1 H-NMR (200 MHz, CDCl₃) δ 1.50-1.90 (m, 2H, NH exch. with D₂O), 2.70-2.90 (m, 1H), 3.60-3.87 (m, 4H), 3.92 (d, 2H, J = 5.2 Hz), 6.44 (bs, 1H, NH exch. with D₂O), 6.82 (d, 1H, J = 9.4 Hz), 7.00-7.22 (m, 3H), 7.26-7.40 (m, 2H). 13 C-NMR (200 MHz, CDCl₃) δ = 30.71 (CH₂), 49.97 (CH x 2), 54.89 (CH₂ x 2), 112.83 (CH), 114.27 (CH), 114.54 (CH), 114.98 (CH), 118.15 (CH), 118.28

(CH), 119.51 (C), 138.51 (C), 151.05 (C), 154.87 (C). IR (nujol) v: 3387 (NH). Elemental analysis calculated (%) for C₁₅H₁₆FN₅: C 63.14, H 5.65, N 24.55. Found: C 63.20, H 5.60, N 24.60.

4.1.85. 3-[6-(4-Nitroanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (14g)

General procedure was used to prepare title compound starting from **70**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **14g**. Orange solid; yield 92% (93 mg); mp 127-128 °C. ¹H-NMR (200 MHz, CDCl₃) δ 1.40-1.80 (m, 2H, NH exch. with D₂O), 2.70-2.90 (m, 1H), 3.60-3.90 (m, 4H), 3.92 (d, 2H, J = 5.8 Hz), 6.47 (bs, 1H, NH exch. with D₂O), 6.83 (d, 1H, J = 9.2 Hz), 6.90-7.05 (m, 1H), 7.10 (d, 1H, J = 9.4 Hz), 7.25-7.45 (m, 4H). ¹³C-NMR (200 MHz, CDCl₃) δ = 32.19 (CH₂), 49.95 (CH x 2), 54.97 (CH₂ x 2), 114.24 (C), 116.86 (CH x 2), 119.42 (C), 119.70 (CH), 128.51 (CH x 2), 142.16 (CH), 151.22 (CH), 154.94 (C). IR (nujol) v: 3446 (NH); 1656, 1341 (NO₂). Elemental analysis calculated (%) for C₁₅H₁₆N₆O₂: C 57.68, H 5.16, N 26.91. Found: C 57.74, H 5.20, N 26.96.

4.1.86. 3-[6-(4-Hydroxyanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (14h)

General procedure was used to prepare title compound starting from **71**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **14h**. Brown solid; yield 68% (62 mg); mp 157-158 °C. ¹H-NMR (200 MHz, CDCl₃) δ1.40-2.10 (m, 3H, NH e OH exch. with D₂O), 2.60-2.90 (m, 1H), 3.65-3.80 (m, 4H), 3.82-4.10 (m, 2H), 6.63 (bs, 1H, NH exch. with D₂O), 6.70-7.15 (m, 2H), 7.23-7.60 (m, 4H). IR (nujol) v: 3395 (NH). Elemental analysis calculated (%) for C₁₅H₁₇N₅O: C 63.59, H 6.05, N 24.72. Found: C 63.64, H 6.09, N 24.79.

4.1.87. 3-[6-(4-Trifluoromethylanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (14i)

General procedure was used to prepare title compound starting from **72**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **14i**. Yellowish solid; yield 75% (81 mg); mp 206-207 °C. 1 H-NMR (200 MHz, CDCl₃) δ 1.63 (bs, 2H, NH exch. with D₂O), 2.65-2.90 (m, 1H), 3.70-3.88 (m, 4H), 3.93 (d, 2H, J = 5.6 Hz), 6.80 (bs, 1H, NH exch. with D₂O), 6.88 (d, 2H, J = 9.8 Hz), 7.09 (d, 2H, J = 9.6 Hz), 7.40-7.56 (m, 2H). 13 C-NMR (200 MHz, CDCl₃) δ = 30.61 (CH₂), 50.02 (CH x

2), 55.12 (CH₂ x 2), 113.50 (CH), 116.17 (CH x 3), 119.98 (CH x 2), 125.37 (C x 2), 144.54 (C), 150.52 (C), 154.85 (C). IR (nujol) v: 3389 (NH). Elemental analysis calculated (%) for C₁₆H₁₆F₃N₅: C 57.31, H 4.81, N 20.89. Found: C 57.40, H 4.85, N 20.86.

4.1.88. 3-[6-(2-Chloroanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (14j)

General procedure was used to prepare title compound starting from **73**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **14j**. Beige solid; yield 82% (80 mg); mp 149-150 °C. 1 H-NMR (200 MHz, CDCl₃) δ 1.63 (d, 1H, J = 8.8 Hz), 1.86 (bs, 1H, NH exch. with D₂O), 2.65-2.90 (m, 1H), 3.65-3.87 (m, 4H), 3.93 (d, 2H, J = 5.6 Hz), 6.76 (bs, 1H, NH exch. with D₂O), 6.80-6.95 (m, 2H), 7.05 (d, 1H, J = 9.6 Hz), 7.09-7.29 (m, 1H), 7.37 (dd, 1H, J_o = 8.0 Hz, J_m = 1.8 Hz), 8.18 (dd, 1H, J_o = 8.4 Hz, J_m = 1.4 Hz). 13 C-NMR (200 MHz, CDCl₃) δ = 30.33 (CH₂), 49.35 (CH x 2), 55.48 (CH₂ x 2), 114.21 (CH), 119.91 (CH), 120.65 (CH), 121.77 (C), 127.27 (C), 129.22 (CH), 136.34 (C), 138.29 (CH), 150.93 (C), 155.42 (C). IR (nujol) v: 3391 (NH). Elemental analysis calculated (%) for C₁₅H₁₆ClN₅: C 59.70, H 5.34, N 23.21. Found: C 59.82, H 5.36, N 23.20.

4.1.89. 3-[6-(3-Chloroanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (14k)

General procedure was used to prepare title compound starting from **74**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **14k**. Beige solid; yield 86% (84 mg); mp 188-190 °C. 1 H-NMR (200 MHz, CDCl₃) δ 1.64 (d, 1H, J = 8.6 Hz), 1.75 (bs, 1H, NH exch. with D₂O), 2.70-2.90 (m, 1H), 3.78 (bs, 4H), 3.94 (d, 2H, J = 5.6 Hz), 6.83 (bs, 1H, NH exch. with D₂O), 6.90-7.03 (m, 2H), 7.11 (d, 1H, J = 9.2 Hz), 7.14-7.30 (m, 2H), 7.35-7.45 (m, 1H). 13 C-NMR (200 MHz, CDCl₃) δ = 30.12 (CH₂), 49.99 (CH x 2), 55.66 (CH₂ x 2), 112.79 (CH), 114.21 (C), 115.21 (CH), 116.03 (CH), 118.80 (C), 119.95 (CH), 129.54 (C), 133.20 (CH), 143.25 (CH), 150.97 (C). IR (nujol) v: 3392 (NH). Elemental analysis calculated (%) for C₁₅H₁₆ClN₅: C 59.70, H 5.34, N 23.21. Found: C 59.84, H 5.38, N 23.19.

4.1.90. 3-[6-(2,4-Dichloroanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (141)

General procedure was used to prepare title compound starting from **75**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **14l**. Yellowish solid; yield 87% (94 mg); mp 93-94 °C. ¹H-NMR (200 MHz, CDCl₃) δ 1.55-1.80 (bs, 2H, NH exch. with D₂O), 2.70-2.90 (m, 1H), 3.79 (bs, 4H), 3.94 (d, 2H, J = 5.4 Hz), 6.67 (bs, 1H, NH exch. with D₂O), 6.89 (d, 1H, J = 9.2 Hz), 7.00 (d, 1H, J = 9.6 Hz), 7.19 (dd, 1H, J_o =8.8 Hz, J_m = 2.0 Hz), 7.30-7.40 (m, 1H), 8.36 (d, 1H, J = 9.0 Hz). ¹³C-NMR (200 MHz, CDCl₃) δ = 29.67 (CH₂), 50.64 (CH x 2), 55.73 (CH₂ x 2), 113.94 (CH), 118.96 (C), 120.07 (C), 121.73 (C), 125.31 (CH), 127.68 (CH), 128.67 (CH), 136.37 (CH), 155.36 (C), 155.84 (C). IR (nujol) v: 3385 (NH). Elemental analysis calculated (%) for C₁₅H₁₅Cl₂N₅: C 63.58, H 4.54, N 20.83. Found: C 63.68, H 4.54, N 20.80.

4.1.91. 3-[6-(3,4-Dichloroanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (14m)

General procedure was used to prepare title compound starting from **76**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **14m**. Yellowish solid; yield 82% (89 mg); mp 143-145 °C. ¹H-NMR (200 MHz, CDCl₃) δ 1.50-1.80 (bs, 2H, NH exch. with D₂O), 2.70-2.90 (m, 1H), 3.78 (bs, 4H), 3.93 (d, 2H, J = 5.4 Hz), 6.80-6.92 (m, 2H, NH exch. with D₂O), 7.04 (d, 1H, J = 9.2 Hz), 7.20-7.35 (m, 2H), 7.46-7.68 (m, 1H). ¹³C-NMR (200 MHz, CDCl₃) δ = 30.22 (CH₂), 49.50 (CH x 2), 54.79 (CH₂ x 2), 113.30 (C), 116.22 (CH), 119.56 (CH), 120.76 (C), 127.28 (C), 128.99 (CH), 130.85 (CH), 140.90 (CH), 150.19 (C), 154.23 (C). IR (nujol) v: 3385 (NH). Elemental analysis calculated (%) for C₁₅H₁₅Cl₂N₅: C 63.58, H 4.54, N 20.83. Found: C 63.66, H 4.56, N 20.79.

4.1.92. 3-[6-(3,4-Methylendioxyanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (14n)

General procedure was used to prepare title compound starting from 77. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **14n**. Brown solid; yield 82% (82 mg); mp 199-200 °C. ¹H-NMR (200 MHz, CDCl₃) δ 1.65 (d, 1H, J = 7.0 Hz), 1.71 (bs, 1H, NH exch. with D₂O), 2.70-2.90 (m, 1H), 3.75 (bs, 4H), 3.90-4.00 (m, 2H), 5.95 (s, 2H), 6.42 (bs, 1H, NH exch. with D₂O), 6.68-6.78 (m, 2H), 6.80 (d, 1H, J = 9.8 Hz), 6.91 (s, 1H), 6.99 (d, 1H, J = 9.8 Hz). IR (nujol)

v: 3396 (NH). Elemental analysis calculated (%) for C₁₆H₁₇N₅O₂: C 61.72, H 5.50, N 22.49. Found: C 61.82, H 5.55, N 22.54.

4.1.93. 3-[6-(N-Methylanilino)pyridazin-3-yl]-3,6-diazabicyclo[3.1.1]heptane (140)

General procedure was used to prepare title compound starting from **78**. The residue was purified by FC (CHCl₃/CH₃OH 8/2) to afford **140**. Beige solid; yield 93% (85 mg); mp 83-84 °C. 1 H-NMR (200 MHz, CDCl₃) δ 1.63 (d, 1H, J=9.0 Hz), 1.72 (bs, 1H, NH exch. with D₂O), 2.70-2.90 (m, 1H), 3.54 (s, 3H), 3.76 (bs, 4H), 3.86-4.05 (m, 2H), 6.68 (d, 1H, J = 9,8 Hz), 6.91 (d, 1H, J=10.0 Hz), 7.05-7.22 (m, 3H), 7.28-7.45 (m, 2H). 13 C-NMR (200 MHz, CDCl₃) δ = 29.45 (CH₂), 36.64 (CH₃), 45.77 (CH x 2), 55.38 (CH₂ x 2), 116.74 (CH), 120.87 (C), 121.42 (CH x 2), 130.15 (CH x 2), 132.10 (CH), 144.32 (C), 148.97 (CH), 155.08 (C). IR (nujol) v: 3422 (NH). Elemental analysis calculated (%) for C₁₆H₁₉N₅: C 68.30, H 6.81, N 24.29. Found: C 68.41, H 6.85, N 24.85. *4.2. Binding studies*

The affinity (K_i) of the synthetized compounds for the $\alpha_4\beta_2$, $\alpha \Box \beta \Box \Box$ and α_7 receptors was tested in vitro using [3H]-Epibatidine labeled rat cerebral cortex membranes $(\alpha_4\beta_2)$, or membranes of HEK 243 cells transiently trasfected with human $\alpha \Box \beta \Box$ nAChR, [${}^{125}I$] α -Bungarotoxin labelled rat hippocampus membranes (α_7) according to a previously described experimental protocol [18].

The LIGAND program was used to calculate the K_i values of all the tested compounds using data obtained from at least three independent saturation and competition binding experiments.

4.3. Functional activity.

The electrophysiological measurements were made as previously described [19]. Briefly, cDNAs coding for human neuronal nicotine subunits were obtained from Janssen Pharmaceuticals (Titusville, NJ, USA). Human neuronal α 7, $\alpha\Box\beta\Box$, α 4 β 2 nAChRs were expressed by transient transfection in the rat anterior pituitary GH4C1 cell line [20] by adding 1 mg of each subunit cDNA to each dish, together with 4 \Box L lipofectamine. Whole-cell currents were recorded using borosilicate glass patch pipettes (3–6 M \Box tip resistance) connected to an Axopatch 200A amplifier

(Molecular Devices, Union City, CA, USA). Data were recorded and analysed using pCLAMP10 software (Molecular Devices). Whole-cell capacitance and patch series resistance (5-15 M□) were estimated from slow-transient compensations, with a series resistance compensation of 70-90%. Cells were voltage clamped at a holding potential of -70 mV and continuously superfused using a gravity-driven perfusion system with independent tubes for standard and agonist-containing solutions, positioned 50-100 □m from the patched cell. A fast exchanger system (RSC-100, BioLogique, Nice, France) allowed complete solution exchange in less than 50 ms. Data are given as means ± standard error of the mean (SEM). Dose-response curves were constructed by sequentially applying different concentrations of agonists, and normalizing the current amplitudes to the value obtained by using 1 mM ACh on the same cell. Data were best-fitted to a Hill equation.

Appendix A. Supplementary data

¹H-NMR and ¹³C-NMR spectra of of representative compounds **12g**, **13g**, and **14g** are available.

Conflict of interest

None of the authors have conflict of interest to declare

Acknowledgements

GM acknowledges Regione Autonoma della Sardegna for economic support (Bando "Pacchetti Integrati di Agevolazione Industria, Artigianato e Servizi", Annualità 2008, Progetto "NICO.NESS.", Prot. N. 120).

References

- [1] F. Fasoli and C. Gotti, Structure of neuronal nicotinic receptors. Curr. Top. Behav. Neurosci. 23 (2015) 1-17.
- [2] R. Hurst, H. Rollema, D. Bertrand, Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol. Ther. 137 (2013) 22-54.

- [3] E. Albuquerque, E.F.R. Pereira, M. Alkondon, S.W. Rogers, Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol. Rev. 89 (2009) 73-120.
- [4] E. Sher, Y. Chen, T.J. Sharples, L.M. Broad, G. Benedetti, R. Zwart, G.I. McPhie, K.H. Pearson, T. Baldwinson, G. De Filippi, Physiological roles of neuronal nicotinic receptor subtypes: new insights on the nicotinic modulation of neurotransmitter release, synaptic transmission and plasticity, Curr. Top. Med. Chem. 4 (2004) 283-297.
- [5] I. Buendia, E. Parada, E. Navarro, R. León, M.G. Lopez, J. Egea, Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection, Biochem. Pharmacol. 97 (4) (2015) 463-472.
- [6] V. Mucchietto, A. Crespi, F. Fasoli, F. Clementi and C. Gotti, Neuronal Acetylcholine Nicotinic Receptors as New Targets for Lung Cancer Treatment. Curr. Pharm. Des. 22 (14) (2016) 2160-2169.
- [7] M. Grupe, M. Grunnet, J.F. Bastlund, A.A. Jensen, Targeting α4β2 nicotinic acetylcholine receptors in central nervous system disorders: perspectives on positive allosteric modulation as a therapeutic approach, Basic Clin. Pharmacol. Toxicol. 116(3) (2015) 187-200.
- [8] M.W. Holladay, M.J. Dart, J.K. Lynch, Neuronal Nicotinic Acetylcholine Receptors as Targets for Drug Discovery, J. Med. Chem. 40 (1997) 4169-4194.
- [9] B. Badio, J.W. Daly, Epibatidine, a potent analgesic and nicotinic agonist, Mol. Pharmacol. 45 (1994) 563-569.
- [10] J.E. Spang, S. Bertrand, G. Westera, J.T. Patt, P.A. Schubiger, D. Bertrand, Chemical Modification of Epibatidine Causes a Switch from Agonist to Antagonist and Modifies Its Selectivity for Neuronal Nicotinic Acetylcholine Receptors, Chem. Biol. 7 (2000) 545-555.
- [11] G. Murineddu, B. Asproni, G. Pinna, M.M. Curzu, A. Dore, A. Pau, F. Deligia, G.A. Pinna, Synthesis of Biologically Active Bridged Diazabicycloheptanes, Curr. Med. Chem. 19 (2012) 5342-5363.

- [12] L. Toma, P. Quadrelli, W.H. Bunnelle, D.J. Andrson, M.D. Meyer, G. Cignarella, A. Gelain, D. Barlocco, 6-Chloropyridazin-3-yl Derivatives Active as Nicotinic Agents: Synthesis, Binding, and Modeling Studies, J. Med. Chem. 45 (2002) 4011-4017.
- [13] W.H. Bunnelle, J.F. Daanen, K.B. Ryther, M.R. Schrimpf, M.J. Dart, A. Gelain, M.D. Meyer, J.M. Frost, D.J. Anderson, M. Buckley, P. Curzon, Y-J Cao, P. Puttfarcken, X. Searle, J. Ji, C.B. Putman, C. Surowy, L. Toma, and D. Barlocco, Structure–Activity Studies and Analgesic Efficacy of *N*-(3-Pyridinyl)-Bridged Bicyclic Diamines, Exceptionally Potent Agonists at Nicotinic Acetylcholine Receptors, J. Med. Chem. 50 (2007) 3627-3644.
- [14] G. Murineddu, C. Murruzzu, M.M. Curzu, G. Chelucci, C. Gotti, A. .Gaimarri, L. Legnani, L. Toma, and G.A. Pinna, Synthesis of 3,6-diazabicyclo[3.1.1]heptanes as novel ligands for neuronal nicotinic acetylcholine receptors, Bioorg. Med. Chem. Lett. 18 (2008) 6147-6150.
- [15] F. Deligia, V. Deiana, C. Gotti, P. Lazzari, M.E.H. Bottazzi, L. Pucci, F. Fasoli, G. Ragusa, G.A. Pinna, G. Murineddu, Design of novel 3,6-diazabicyclo[3.1.1]heptane derivatives with potent and selective affinities for α₄β₂ neuronal nicotinic acetylcholine receptors, Eur. J. Med. Chem. 103 (2015) 429-437.
- [16] D. Colquhoun, Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors, Br. J. Pharmacol. 125(5) (1998) 924-947.
- [17] K. Cahill, N. Lindson-Hawley, K.H. Thomas, T.R. Fanshawe, T. Lancaster, Nicotine receptor partial agonists for smoking cessation, Cochrane Database Syst Rev. 2016 May 9;(5):CD006103.
- [18] C. Bolchi, E. Valoti, C. Gotti, F. Fasoli, P. Ruggeri, L. Fumagalli, M. Binda, V. Mucchietto, M. Sciaccaluga, R. Budriesi, S. Fucile, Chemistry and Pharmacology of a Series of Unichiral Analogues of 2-(2-Pyrrolidinyl)-1,4-benzodioxane, Prolinol Phenyl Ether, and Prolinol 3-Pyridyl Ether Designed as alpha4beta2-Nicotinic Acetylcholine

- Receptor Agonists, J. Med. Chem. 58(16) (2015) 6665-6677.
- [19] C. Dallanoce, P. Magrone, C. Matera, F. Frigerio, G. Grazioso, M. De Amici, S. Fucile, V. Piccari, K. Frydenvang, L. Pucci, C. Gotti, F. Clementi, C. De Micheli, Design, synthesis, and pharmacological characterization of novel spirocyclic quinuclidinyl-Δ2-isoxazoline derivatives as potent and selective agonists of α7 nicotinic acetylcholine receptors, Chem. Med. Chem. 6(5) (2011) 889-903.
- [20] S. Fucile, M. Renzi, P. Lax, F. Eusebi, Fractional Ca(2+) current through human neuronal alpha7 nicotinic acetylcholine receptors, Cell Calcium 34(2) (2003) 205-209.

Captions to Figures and Schemes

- Fig. 1. Natural nAChRs ligands.
- Fig. 2. Diazabicycloalcanes.
- Fig. 3. 3,6-Diazabicyclo[3.3.1]heptanes.

Scheme 1. Reagents and conditions: a) Dihalopyridine, BINAP, Pd₂(dba)₃, Cs₂CO₃, PhMe, rfx, 20 h (for **16** and **17**); b) DCPD, IPr·HCl, Pd₂(dba)₃, Cs₂CO₃, dioxane, rfx, 22 h (**18**); c) Xantphos, Pd₂(dba)₃, tBuOK, PhMe, 130 °C, 0.5-2 h, MW (normal abs); d) HCOOH, rt, overnight.

Table 1. $\alpha_{\Box}\beta_{\Box}$ and α_7 nAChR binding affinity for compounds 12a-0, 13a-0 and -14a-0. ^aCoefficient of variation on three independent experiments. ^bNot Determined. ^c[³H]-Epibatidine. ^d[¹²⁵I] α -Bungarotoxine.

Table 2. α3β4 nAChR binding affinity for compounds 12a-c, e-i, k, 13c, f-i, k, m and -14i. ^aCoefficient of variation on three independent experiments. ^b[³H]-Epibatidine.

Fig. 4. Partial agonism of compound 12c on human heteromeric nAChRs.

PANEL A. Typical whole-cell inward currents elicited by nACh (1 mM) and compound **12c** (100 μM) applied on GH4C1 cells transiently transfected with cDNA for human α_4 and β_2 subunits (left) or human α_3 and β_4 subunits (right). Holding potential, -70 mV. Note the lower current amplitude evoked by compound **12c**, behaving as a partial agonist on these receptors. PANEL B. Dose-response curves obtained by best-fitting the normalized current amplitudes, elicited by compound **12c** applied to GH4C1 cells expressing human $\alpha_4\beta_2$ (\square) or human $\alpha_3\beta_4$ nAChRs (\bullet), to the following equation: $I = Imax [agonist]^{nH}/(EC_{50}^{nH} + [agonist]^{nH})$. For $\alpha_4\beta_2$ and $\alpha_3\beta_4$ nAChRs the EC₅₀ values were 2.90±0.03 μM and 1.90±0.8 μM, respectively; nH values were 1.79±0.01 μM and 0.90±0.3 μM, respectively.

Fig. 5. Partial agonism of compound 13g on human heteromeric nAChRs.

PANEL A. Typical whole-cell inward currents elicited by nACh (1 mM) and compound 13g (100 μ M) applied on GH4C1 cells transiently transfected with cDNA for human α_4 and β_2 subunits

(left) or human α_3 and β_4 subunits (right). Holding potential, -70 mV. Note the absence of response on $\alpha_3\beta_4$ nAChRs. PANEL B. Dose-response relations of the normalized current amplitudes elicited by compound **13g** applied to GH4C1 cells expressing human $\alpha_4\beta_2$ (\square) or human $\alpha_3\beta_4$ nAChRs (\bullet). For $\alpha_4\beta_2$ nAChRs the EC₅₀ value was > 10 μ M.

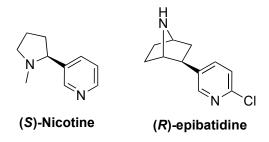


Fig. 1. Natural nAChRs ligands.

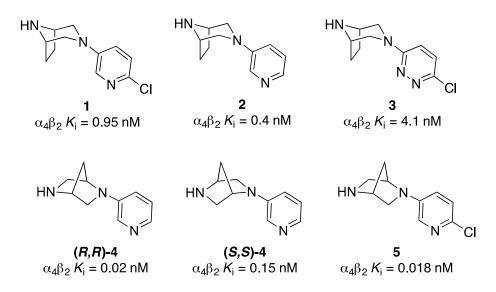
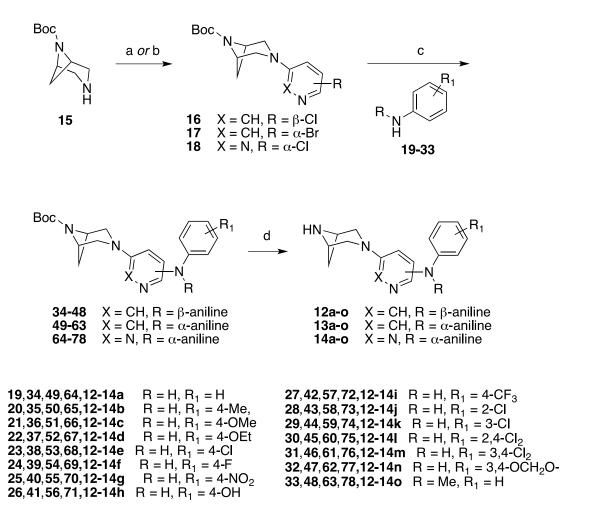



Fig. 2. Diazabicycloalcanes.

Fig. 3. 3,6-Diazabicyclo[3.3.1]heptanes.

Scheme 1. Reagents and conditions: a) Dihalopyridine, BINAP, Pd₂(dba)₃, Cs₂CO₃, PhMe, rfx, 20 h (for **16** and **17**); b) DCPD, IPr·HCl, Pd₂(dba)₃, Cs₂CO₃, dioxane, rfx, 22 h (**18**); c) Xantphos, Pd₂(dba)₃, tBuOK, PhMe, 130 °C, 0.5-2 h, MW (normal abs); d) HCOOH, rt, overnight.

Table 1. $\alpha_4\beta_2$ and α_7 nAChR binding affinity for compounds 12a-o, 13a-o and -14a-o.

$$\begin{array}{c|c} HN & & & \\ \hline & N & & \\ \hline & X & N \\ \hline & & R \\ \end{array}$$

Compound	X	α/β	R	R ₁	α4β2	CV	a 7	CV	Selectivity
Compound	21	ω/p	K		K _i (nM)	(%)a	K _i (nM)	(%) ^a	$\alpha_7/\alpha_4\beta_2$
12a	СН	β	Н	Н	0.0807	57	26.9	53	333
12b	СН	β	Н	4-CH ₃	0.148	43	300	116	2,027
12c	СН	β	Н	4-OCH ₃	0.0598	33	837	66	13,996
12d	СН	β	Н	4-OC ₂ H ₅	N.D.b		N.D.		-
12e	СН	β	Н	4-C1	0.118	39	116	72	983
12f	СН	β	Н	4-F	0.091	45	441	90	4,846
12g	СН	β	Н	4-NO ₂	0.0225	52	241	51	10,711
12h	СН	β	Н	4-OH	0.342	54	2.1×10^3	90	6,140
12i	СН	β	Н	4-CF ₃	0.373	41	186	69	499
12j	СН	β	Н	2-C1	N.D.		N.D.		-
12k	СН	β	Н	3-C1	0.124	41	1.2×10^3	90	9,677
121	СН	β	Н	2,4-Cl ₂	N.D.		N.D.		-
12m	СН	β	Н	3,4-Cl ₂	1.25	23	1.9×10^3	88	1,520
12n	СН	β	Н	3,4-OCH ₂ O	N.D.		N.D.		-
120	СН	β	CH ₃	Н	2.06	29	317	74	154
13a	СН	α	Н	Н	2.66	30	475	50	179
13b	СН	α	Н	4-CH ₃	52.1	26	88.8 x 10 ³	95	1,704
13c	СН	α	Н	4-OCH ₃	7.3	74	3.01×10^3	80	412

13d	СН	α	Н	4-OC ₂ H ₅	N.D.		N.D.		-
13e	СН	α	Н	4-C1	2.49	31	823	58	330
13f	СН	α	Н	4-F	2.38	37	1.3×10^3	83	546
13g	СН	α	Н	4-NO ₂	1.76	33	4.1×10^3	71	2,330
13h	СН	α	Н	4-OH	7.1	45	2.2×10^3	50	310
13 i	СН	α	Н	4-CF ₃	0.569	27	235	45	413
13 j	СН	α	Н	2-C1	N.D.		N.D.		-
13k	СН	α	Н	3-C1	2.2	37	3.3×10^3	78	1,500
131	СН	α	Н	2,4-Cl ₂	N.D.		N.D.		-
13m	СН	α	Н	3,4-Cl ₂	2.3	40	2.04×10^3	94	887
13n	СН	α	Н	3,4-OCH ₂ O	41	72	6.15×10^3	40	150
130	СН	α	CH ₃	Н	N.D.		N.D.		-
14a	N	α	Н	Н	441	27	10.4×10^3	140	24
14b	N	α	Н	4-CH ₃	44.3	26	21.7×10^3	84	490
14c	N	α	Н	4-OCH ₃	578	27	50.2×10^3	79	87
14d	N	α	Н	4-OC ₂ H ₅	N.D.		N.D.		-
14e	N	α	Н	4-C1	90.4	24	17.3×10^3	79	191
14f	N	α	Н	4-F	868	23	111×10^3	84	128
14g	N	α	Н	4-NO ₂	86.2	26	6.9×10^3	76	80
14h	N	α	Н	4-OH	N.D.		N.D.		-
14i	N	α	Н	4-CF ₃	6.9	44	2.03×10^3	73	294
14j	N	α	Н	2-C1	N.D.		N.D.		-
14k	N	α	Н	3-C1	1.54×10^3	29	41.8×10^3	72	27
141	N	α	Н	2,4-Cl ₂	N.D.		N.D.		-

14m	N	α	Н	3,4-Cl ₂	516	26	5.1×10^3	67	10
14n	N	α	Н	3,4-OCH ₂ O	N.D.		N.D.		-
140	N	α	CH ₃	Н	1.43×10^3	27	101×10^3	91	71
[³ H]-Epi ^c					0.050	12	N.D.		
$[^{125}I]\alpha$ -BgT x^d					N.D.		1.1	40	

^aCoefficient of variation on three independent experiments. ^bNot Determined. ^c[³H]-Epibatidine. ^d[¹²⁵I]α-Bungarotoxine.

Table 2. α3β4 nAChR binding affinity for compounds 12a-c, e-i, k, 13c, f-i, k, m and -14i.

$$\begin{array}{c|c} HN & & & \\ \hline \\ & & \\$$

Compound	X	α/β	R	Rı	α3β4	CV	Selectivity
Compound	Λ				$K_{t}(nM)$	(%) ^a	$\alpha_3\beta_4/\alpha_4\beta_2$
12a	СН	β	Н	Н	0.799	54	10
12b	СН	β	Н	4-CH ₃	1.4	65	9
12c	СН	β	Н	4-OCH ₃	2.2	84	37
12e	СН	β	Н	4-C1	1.2	46	10
12f	СН	β	Н	4-F	1.25	54	14
12g	СН	β	Н	4-NO ₂	0.684	46	30
12h	СН	β	Н	4-OH	0.988	46	3
12i	СН	β	Н	4-CF ₃	1.02	47	3
12k	СН	β	Н	3-C1	293	76	2,363
13c	СН	α	Н	4-OCH ₃	9.03	83	1
13f	СН	α	Н	4-F	13	40	5
13g	СН	α	Н	4-NO ₂	25	50	14
13h	СН	α	Н	4-OH	165	59	23
13i	СН	α	Н	4-CF ₃	0.818	80	1
13k	СН	α	Н	3-C1	4.8	35	2
13m	СН	α	Н	3,4-Cl ₂	40.9	53	18
14i	N	α	Н	4-CF ₃	115	50	17
[³ H]-Epi ^b					0.150	30	

^aCoefficient of variation on three independent experiments. ^b[³H]-Epibatidine.

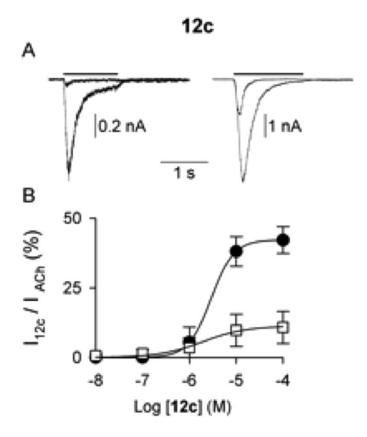


Fig. 4. Partial agonism of compound 12c on human heteromeric nAChRs.

PANEL A. Typical whole-cell inward currents elicited by ACh (1 mM) and compound **12c** (100 μM) applied on GH4C1 cells transiently transfected with cDNA for human α_4 and β_2 subunits (left) or human α_3 and β_4 subunits (right). Holding potential, -70 mV. Note the lower current amplitude evoked by compound **12c**, behaving as a partial agonist on these receptors. PANEL B. Dose-response curves obtained by best-fitting the normalized current amplitudes, elicited by compound **12c** applied to GH4C1 cells expressing human $\alpha_4\beta_2$ (\square) or human $\alpha_3\beta_4$ nAChRs (\blacksquare), to the following equation: $I = Imax [agonist]^{nH}/(EC_{50}^{nH} + [agonist]^{nH})$. For $\alpha_4\beta_2$ and $\alpha_3\beta_4$ nAChRs the EC₅₀ values were 2.90±0.03 μM and 1.90±0.8 μM, respectively; nH values were 1.79±0.01 μM and 0.90±0.3 μM, respectively.

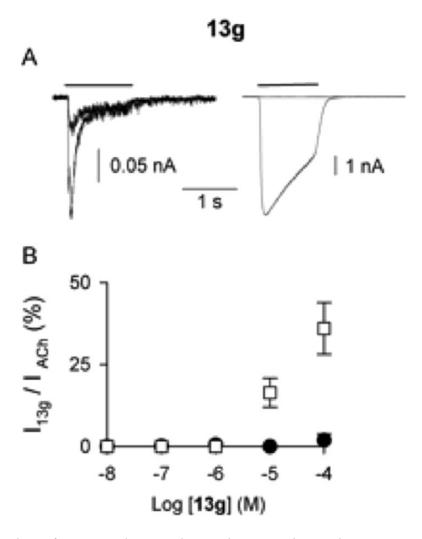


Fig. 5. Partial agonism of compound 13g on human heteromeric nAChRs.

PANEL A. Typical whole-cell inward currents elicited by ACh (1 mM) and compound **13g** (100 μM) applied on GH4C1 cells transiently transfected with cDNA for human α_4 and β_2 subunits (left) or human α_3 and β_4 subunits (right). Holding potential, -70 mV. Note the absence of response on $\alpha_3\beta_4$ nAChRs. PANEL B. Dose-response relations of the normalized current amplitudes elicited by compound **13g** applied to GH4C1 cells expressing human $\alpha_4\beta_2$ (\square) or human $\alpha_3\beta_4$ nAChRs (\blacksquare). For $\alpha_4\beta_2$ nAChRs the EC₅₀ value was > 10 μM.