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Abstract Antimicrobial peptides (AMPs) play a key role in the defence mechanism of living organisms against
microbial pathogens, displaying both bactericidal and immunomodulatory properties. They are considered
as a promising alternative to the conventional antibiotics towards which bacteria are becoming highly
resistant. Recently, a derivative of the frog skin AMP Esculentin-1a, Esculentin-1a(1–21)NH2 [Esc(1–21)],
showed a strong and fast membranolytic activity against Gram-negative bacteria but with a lower efficacy
against Gram-positive ones. Here, with the aim to increase the α-helicity of Esc(1–21) and the expected
potency against Gram-positive bacteria, we designed an analog bearing three α-aminoisobutyric acid (Aib)
residues at positions 1, 10, and 18 of its primary structure. We demonstrated that the incorporation of Aib
residues: (1) promoted the α-helix conformation of Esc(1–21), as confirmed by circular dichroism and
two-dimensional nuclear magnetic resonance spectroscopies; (2) was sufficient to make this analog more
active than the parent peptide against several Gram-positive bacterial strains without affecting its activity
against Gram-negative bacteria; and (3) resulted to be devoid of toxic effect toward epithelial cells at the
active antimicrobial concentrations. These results suggest that replacement of L-amino acids with Aib
residues has beneficial effects on the structure and properties of the membrane-active peptide Esc(1–21),
making it a better candidate for the design and development of selective drugs against Gram-positive
bacteria.
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making it a better candidate for the design and develop-
ment of selective drugs against Gram-positive bacteria.

Keywords Antimicrobial peptides · α-Aminoisobutyric 
acid · Gram-positive bacteria · NMR

Abbreviations

CD  Circular dichroism
DIEA  N,N-Diisopropylethylamine
DMEM  Dulbecco’s modified Eagle’s medium
FBS  Heat-inactivated fetal bovine serum
HATU  1-[Bis(dimethylamino)methylene]-1H-

1,2,3-triazolo[4,5-b]pyridinium 3-oxide 
hexafluorophosphate

HBTU  N,N,N′,N′-Tetramethyl-O-(1H-benzotriazol-1-yl)
uronium hexafluorophosphate

HOBt  1-Hydroxybenzotriazole
MBHA  4-Methylbenzhydrylamine
MH  Mueller–Hinton
MTT  3(4,5-Dimethylthiazol-2yl)2,5-diphenyltetrazo-

lium bromide
NMR  Nuclear magnetic resonance
SDS  Sodium dodecylsulfate
TFA  Trifluoroacetic acid
TFE  Trifluoroethanol

Introduction

Ribosomally made antimicrobial peptides (AMPs) are pro-
duced by all species of life throughout the evolutionary 
scale as principal components of their innate defence sys-
tem against invading microorganisms (Gonzalez-Navajas 
et al. 2014; Mangoni and Shai 2011; Mookherjee and Han-
cock 2007; Nicolas and Mor 1995). Furthermore, they are 
endowed with immunomodulatory properties (Choi et al. 

Abstract Antimicrobial peptides (AMPs) play a key role 
in the defence mechanism of living organisms against 
microbial pathogens, displaying both bactericidal and 
immunomodulatory properties. They are considered as 
a promising alternative to the conventional antibiotics 
towards which bacteria are becoming highly resistant. 
Recently, a derivative of the frog skin AMP Esculentin-1a, 
Esculentin-1a(1–21)NH2 [Esc(1–21)], showed a strong and 
fast membranolytic activity against Gram-negative bacte-
ria but with a lower efficacy against Gram-positive ones. 
Here, with the aim to increase the α-helicity of Esc(1–21) 
and the expected potency against Gram-positive bacteria, 
we designed an analog bearing three α-aminoisobutyric 
acid (Aib) residues at positions 1, 10, and 18 of its pri-
mary structure. We demonstrated that the incorporation of 
Aib residues: (1) promoted the α-helix conformation of 
Esc(1–21), as confirmed by circular dichroism and two-
dimensional nuclear magnetic resonance spectroscopies; 
(2) was sufficient to make this analog more active than 
the parent peptide against several Gram-positive bacterial 
strains without affecting its activity against Gram-negative 
bacteria; and (3) resulted to be devoid of toxic effect toward 
epithelial cells at the active antimicrobial concentrations. 
These results suggest that replacement of L-amino acids 
with Aib residues has beneficial effects on the structure 
and properties of the membrane-active peptide Esc(1–21), 
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2012; Hemshekhar et al. 2016) which have led to the more 
appropriate designation of “host-defence peptides” (Han-
cock et al. 2016; Mansour et al. 2014). More specifically, 
amphibian skin dermal glands, controlled by sympathetic 
nerves, are among the richest sources of biologically active 
peptides with pharmacological and antimicrobial activities 
(Chen et al. 2003; Conlon 2011; Erspamer 1971; Haslam 
et al. 2014; Konig et al. 2014; Mangoni et al. 2015). They 
are stored within granules and released on the skin surface 
by a holocrine mechanism, upon alarm or physical injury 
(Mangoni et al. 2001, 2007). Each frog species produces its 
own unique set of AMPs encompassing families of 2–100 
closely related members (Mangoni 2006). Esculentins-1 
are a class of frog skin AMPs, characterized by a 46 amino 
acids primary structure and a broad range of antimicrobial 
activity (Gamberi et al. 2007; Mangoni et al. 2003; Ponti 
et al. 2003; Simmaco et al. 1994). Studies on their mode 
of action pointed out the bacterial membrane as the major 
target. Esculentins-1 possess features common to most lin-
ear AMPs, i.e., an overall positive charge at neutral pH and 
a considerable proportion of hydrophobic residues (Sim-
maco et al. 1994). These properties are instrumental in 
allowing an electrostatic interaction between the cationic 
AMP and the negatively charged components of the micro-
bial cell surface followed by the peptide’s folding into an 
amphiphilic structure, with a resulting perturbation of the 
cell membrane permeability and hence cell death (Ganz 
and Lehrer 1998; Haney et al. 2010; Lohner and Blondelle 
2005; Shai 2002). Importantly, in contrast with the conven-
tional antibiotics that interfere with biological events by 
processes involving specific recognition of chiral targets 
(Bai et al. 2011; Levy 2002; Savjani et al. 2009), the mech-
anism of action underlying the killing activity of AMPs is 
generally based on the physical disruption of the target cell 
membrane, thus limiting the induction of microbial resist-
ance (Hancock and Rozek 2002; Lohner 2016). Indeed, 
to become resistant to AMPs, microbes should drastically 
change the composition of their membrane, an event that 
could not be achieved without causing a significant harm 
to the microorganism itself (Mangoni 2006; Mangoni and 
Shai 2011). It is worth recalling that the membrane of 
mammalian cells is much richer in zwitterionic phospho-
lipids as compared with that of microbial cells and this dif-
ference is one of the major reasons accounting for the pref-
erential activity of AMPs towards bacterial and fungal cells 
(Epand and Vogel 1999).

The previous studies reported that the N-terminal deriv-
ative of esculentin-1a, Esc-1a(1–21)NH2, [Esc(1–21)] 
corresponding to its first 20 amino acids followed by an 
amidated Gly residue (H-Gly-Ile-Phe-Ser-Lys-Leu-Ala-
Gly-Lys-Lys-Ile-Lys-Asn-Leu-Leu-Ile-Ser-Gly-Leu-Lys-
Gly-NH2) adopts an alpha-helical conformation in a mem-
brane-mimicking environment and retains the antimicrobial 

activity of the full-length peptide esculentin-1a (Gamberi 
et al. 2007; Ghosh et al. 2016). More recently, Esc(1–21) 
was shown to display a fast membranolytic activity against 
both planktonic and biofilm forms of the multi-drug resist-
ant (MDR) opportunistic Gram-negative bacterium Pseu-

domonas aeruginosa (Breidenstein et al. 2011; Drenkard 
and Ausubel 2002; Kolar et al. 2015; Luca et al. 2013; 
Uccelletti et al. 2010). This bacterium has the ability to col-
onize both inert surfaces (such as those of medical devices, 
e.g., contact lenses) and biological tissues, forming biofilm 
communities (Hoiby et al. 2011; Parsek and Tolker-Nielsen 
2008; Rybtke et al. 2015) which can easily lead to acute 
and chronic infections, including otitis, pneumonia, and 
keratitis (Abbouda et al. 2014; Bodey et al. 1983). How-
ever, a lower efficacy has been shown by Esc(1–21) against 
Gram-positive bacteria (Kolar et al. 2015).

In this connection, with the aim of enlarging the 
spectrum of activity of Esc(1–21) especially against 
Gram-positive bacteria as well as its biostability to pro-
teases, we explored the effects of the incorporation of 
α-aminoisobutyric acid (Aib) residues into the pep-
tide sequence. When inserted into the primary structure 
of peptides, this strongly helicogenic, non-coded, Cα-
tetrasubstituted α-amino acid is expected to increase the 
α-helical content of the molecule (Karle and Balaram 1990; 
Toniolo et al. 2001) and potentially confers it a higher 
resistance against enzymatic degradation (De Zotti et al. 
2009, 2012; Yamaguchi et al. 2003). Furthermore, it was 
previously demonstrated that a stabilized α-helical struc-
ture is an essential requirement to enhance the microbicidal 
activity of a peptide against Gram-positive bacteria and 
fungi (Giangaspero et al. 2001). In this work, we report on 
the synthesis of an analog of Esc(1–21), bearing three Aib 
residues at sequence position 1, 10, and 18 [(Aib1,10,18)-
Esc(1–21)]; its structural characterization in different envi-
ronments, by circular dichroism (CD) and two-dimensional 
nuclear magnetic resonance spectroscopies (2D-NMR) 
techniques, as well as its biological activity, and compared 
these results with those of the parent peptide Esc(1–21).

Materials and methods

Materials

Fmoc-amino acids were supplied from Novabiochem 
(Merck Biosciences, La Jolla, CA, USA), and all other 
amino-acid derivatives and reagents for peptide synthesis 
were purchased from Sigma-Aldrich (St. Louis, MO, USA). 
1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-
b]pyridinium 3-oxide hexafluorophosphate (HATU) was 
purchased from GLS (Shanghai, China). Trypsin–EDTA 
was purchased from Invitrogen (Life-Technologies Europe, 
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Monza, Italy); 3(4,5-dimethylthiazol-2yl)2,5-diphenyltetra-
zolium bromide (MTT) was from Sigma-Aldrich (St. Luis, 
MO). Dulbecco’s modified Eagle’s medium (DMEM), 
heat-inactivated fetal bovine serum (FBS), glutamine, gen-
tamycin, and penicillin/streptomycin were from Euroclone 
(Milan, Italy). Esc(1–21) was purchased from Selleck 
Chemicals (Houston, TX, USA) and purified according to 
(Di Grazia et al. 2015a, b).

Synthesis of [Aib1,10,18]-Esc (1–21)

Assembly of the peptide on the Advanced ChemTech 
(Louisville, KY, USA) 348 Ω peptide synthesizer was per-
formed on a 0.06-mmol scale by the FastMoc methodology 
[HBTU, HOBt, DIEA, single acylation protocol, 45 min 
coupling time, N,N-dimethylformamide (DMF) as the sol-
vent], starting with Rink Amide MBHA resin (Iris Biotech, 
Marktredwitz, Germany) (95 mg, loading 0.65 mmol g−1). 
The deprotection of the Fmoc group was performed with 
a 20 % piperidine solution in DMF in two steps of 5 and 
15 min, respectively. The coupling steps involving Aib 
residues, carried out in presence of HATU, were repeated 
twice. Boc and tBu side-chain protections were used for 
Lys and Ser residues, respectively. Cleavage of the peptide 
from the resin, concomitantly with side-chain deprotec-
tions, was achieved by treatment with trifluoroacetic acid 
(TFA)/triisopropylsilane (TIS)/water (95:2.5:2.5 v/v). The 
crude peptide was purified by reverse-phase flash chroma-
tography using a Biotage Isolera Prime (Uppsala, Sweden) 
purification system. The chromatrographically homogene-
ous, final peptide was characterized by electrospray ioniza-
tion mass spectrometry (ESI–MS) and NMR.

Microorganisms

The microorganisms used for the antimicrobial assays were 
the reference Gram-negative bacteria Acinetobacter bau-

mannii ATCC 19606, Escherichia coli D21, E. coli ATCC 
25922; Pseudomonas aeruginosa ATCC 27853, Yersinia 

pseudotuberculosis YPIII, and the Gram-positive bacteria 
Bacillus megaterium Bm11, Staphylococcus epidermidis 
ATCC 12228, as well as the clinical isolates Staphylococ-

cus aureus 6938; Staphylococcus capitis 1; Staphylococcus 

epidermidis 21; and Staphylococcus hominis 1. In addition, 
two Candida strains were employed: the reference Candida 

albicans ATCC 10231 and C. guillier mondii from the frog 
natural flora (Mangoni et al. 2001).

Antimicrobial assay

Susceptibility testing was performed by adapting the 
microbroth dilution method outlined by the Clinical and 
Laboratory Standards Institute, using sterile 96-well plates 

(Falcon NJ, USA). The bacterial growth was aseptically 
measured by absorbance at 590 nm with a spectrophotom-
eter (UV-1700 Pharma Spec Shimadzu, Tokyo, Japan). Ali-
quots (50 µl) of bacteria in mid-log phase at a concentra-
tion of 2 × 106 colony-forming units (CFU)/mL in culture 
medium (Mueller–Hinton, MH) were added to 50 µl of 
MH broth containing the peptide in serial twofold dilutions 
ranging from 64 to 0.25 µM. Inhibition of microbial growth 
was visually observed, after 18-h incubation at 37 °C. Anti-
bacterial activity was expressed as the minimal inhibitory 
concentration (MIC), the concentration of peptide causing 
100 % inhibition of microbial growth. The same procedure 
was followed with yeasts in Winge medium (Valenti et al. 
1985) using a final cell concentration of 3.5 × 104 CFU/ml 
and an incubation time of 18 h at 30 °C.

Cell cultures

The human type II alveolar epithelial cell line A549 cells 
(from the American Type Culture Collection) and the 
human immortalized keratinocytes (HaCaT) cell line 
were employed. Cells were cultured in DMEM containing 
10 % heat-inactivated fetal bovine serum (FBS) and sup-
plemented with L-glutamine (2 mM or 4 mM for A549 or 
HaCaT cells, respectively) and antibiotics (0.1 mg/ml of 
penicillin and streptomycin for A549 cells; 0.05 mg/ml 
of gentamicin for HaCaT cells) at 37 °C and 5 % CO2 in 
25-cm2 flasks.

Peptides’ effect on cell viability

The effect of both peptides on the viability of mamma-
lian cells was determined by the inhibition of MTT reduc-
tion to insoluble formazan, by mitochondrial reductases. 
Cells suspended in the corresponding culture medium sup-
plemented with glutamine and 2 % FBS without antibiot-
ics were plated in triplicate wells of a microtiter plate, at 
4 × 104 cells/well. After overnight incubation at 37 °C in a 
5 % CO2 atmosphere, the medium was replaced with 100-
µl fresh serum-free medium containing the peptides at dif-
ferent concentrations. The plate was incubated for 2 h or 
24 h at 37 °C in a 5 % CO2 atmosphere (Paiva et al. 2012). 
Then, the culture medium was removed and replaced with 
Hank’s buffer (136-mM NaCl; 4.2-mM Na2HPO4; 4.4-mM 
KH2PO4; 5.4-mM KCl; 4.1-mM NaHCO3, pH 7.2, supple-
mented with 20-mM D-glucose) containing 0.5 mg/ml MTT. 
After 4 h incubation, the formazan crystals were dissolved 
by adding 100 µl of acidified isopropanol and viability was 
determined by absorbance measurements at 570 nm using 
a microplate reader (Infinite M200; Tecan, Salzburg, Aus-
tria). Cell viability was calculated with respect to the control 
(cells not treated with peptide). The percentage of viable 
cells was calculated according to the formula:
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where the blank is given by samples without cells and not 
treated with the peptide.

Circular dichroism spectroscopy

The CD spectra were measured on a Jasco (Hachioji City, 
Japan) model J-715 spectropolarimeter equipped with a 
Haake thermostat (Thermo Fisher Scientific, Waltham, 
MA, USA). Milli-Q grade water, spectrograde methanol, 
and TFE (Acros Organic, Geel, Belgium) were used as 
solvents. Peptide concentrations were determined by UV 
absorption at 254 nm. For each spectrum, a total of eight 
scans were averaged. Baselines were corrected by subtract-
ing the solvent contribution. Fused quartz cell of 0.1-mm 
path length (Hellma, Mühlheim, Germany) was used. For 
the experiments carried out in mixed solvents, the proper 
ratio of the individual solutions at the same concentration 
was mixed. The values are expressed in terms of [θ]T, the 
total molar ellipticity (deg × cm2 × dmol1).

Nuclear magnetic resonance spectrometry

Samples for NMR spectrometry were dissolved in TFE-
d2 solution (peptide concentrations: about 1 and 1.5 mM, 
respectively, for Esc(1–21) and its Aib1,10,18 analog. The 
spectra were recorded at 298 K. All NMR experiments 
were performed on a Bruker Avance DMX-600 spectrome-
ter using the TOPSPIN 1.3 software package. Presaturation 
of the H2O signal was obtained using a WATERGATE gra-
dient program. All homonuclear spectra were acquired by 
collecting 512 experiments, each one consisting of 64–80 
scans and 2 K data points. The spin systems of the pro-
tein amino-acid residues were identified using the stand-
ard DQF-COSY (Rance et al. 1983) and CLEAN-TOCSY 
(Bax and Davis 1985; Griesinger et al. 1988) spectra. In 
the latter case, the spin-lock pulse sequence was 70-ms 
long. NOESY experiments were used for sequence-specific 
assignment (Wüthrich 1986), the mixing time used was 
150 ms to avoid spin-diffusion problems.

Statistical analysis

Data were collected from three independent experiments. 
Quantitative data are expressed as the mean ± SEM. Statis-
tical analysis was performed using the two-way analysis of 
variance (ANOVA), with the PRISM software (GraphPad, 
San Diego, CA, USA). Differences were considered to be 
statistically significant for p < 0.05. The levels of statistical 
significance are indicated in the legend to figures.

(Absorbance sample − Absorbance blank)

(Absorbance control − Absorbance blank)
× 100,

Results and discussion

Synthesis

We synthesized an analog of Esc(1–21) in which we 
inserted three Aib residues at positions 1, 10, and 18. 
The choice of the sequence positions of Esc(1–21) to be 
replaced by Aib was based on the following considerations: 
(1) the placement of a non-coded Aib residue at position 1 
might prevent proteolytic degradation by aminopeptidases, 
whereas an amidated peptide C-terminus is known to con-
fer protection against carboxypeptidases (Rink et al. 2010; 
Veber and Freidinger 1985), thus suggesting that the pres-
ence of a C-terminal Aib would not be necessary. Concern-
ing the protection by endopeptidases, the introduction of a 
few additional Aib replacements, possibly quite evenly dis-
tributed along the primary structure, is expected to be (at 
least to some extent) beneficial. (2) The helix-promoting 
capabilities of Aib are more effective when this residue is 
placed internal to the peptide sequence, where it can dis-
play its influence on both the preceding and the following 
residues in the primary sequence. (3) A helical wheel plot 
of the primary structure of Esc(1–21), where residues are 
arranged according to an ideal α-helical folding, is shown 
in Fig. 1a. In this putative fully α-helical conformation, two 
faces can be identified, one possessing a more pronounced 
hydrophobic character and the other a more hydrophilic 
one. However, strongly hydrophobic residues, such as Ile2, 
Leu6, and Ile16, are located on the same face occupied by 
the five charged Lys residues. (4) It is worth recalling that 
in naturally occurring Aib-rich amphipathic helical pep-
tides of fungal origin known as peptaibiotics (Toniolo and 
Brückner 2009), the Aib residues are, in general, located 
within the hydrophobic face but also at its boundary with 
the hydrophilic one. The most striking example of this lat-
ter disposition is provided by the lipopeptide trichogin 
(Toniolo et al. 1994). All together, these observations 
suggested us to place three Aib residues in the Esc(1–21) 
sequence; two of them at positions 1 and 18 (both as a 
replacement for Gly), and one in substitution for Lys10, i.e., 
at the boundary between the hydrophilic and hydropho-
bic faces (Fig. 1b). As a result of this latter replacement, 
the overall net charge decreases by one unit if compared 
with that of the parent peptide, and the overall hydrophilic/
hydrophobic profile becomes slightly modified. We princi-
pally preferred to give priority to the increase of the helical 
propensity and proteolytic stability of the central part of the 
sequence expected as a result of the Lys10 → Aib10 substi-
tution, even if accompanied by the potentially unfavorable 
effects outlined above. For the solid-phase peptide synthe-
sis of [Aib1,10,18]-Esc (1–21), we exploited a well-estab-
lished protocol concerning the use of a strong activating 
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agent, HATU, in the coupling reactions involving Aib resi-
dues (De Zotti et al. 2012). The synthesis was performed 
on a Rink amide MBHA resin using an Fmoc Nα protec-
tion protocol as described in “Materials and methods”. The 
cleavage of the peptide from the resin was achieved using a 
mixture of TFA/TIS/H2O. The crude peptide was obtained 
in 80 % yield with a purity of 85 %, as evidenced by RP-
HPLC. Reverse-phase flash chromatography allowed the 
isolation of the peptide with 97 % purity.

H-Aib1-Ile-Phe-Ser-Lys-Leu-Ala-Gly-Lys-Aib10-Ile-Lys-Asn-Leu-
Leu-Ile-Ser-Aib18-Leu-Lys-Gly-NH2

MW (calcd for 
C104H185N27O24)

MW (experi-
mental)

tr (min) Purity

[Aib1,10,18]-
Esc(1–21)

2196.41 2196.40 9.38a 97 %

a Elution conditions: Jupiter C18 column, 300 Å, 5 µm; 30–60 % B 
in 20 min (A: 9:1 water/acetonitrile, 0.05 % TFA; B: 9:1 acetonitrile/
water, 0.05 % TFA)

Antimicrobial activity

The activity of [Aib1,10,18]-Esc(1–21) against different 
microorganisms, including Gram-negative, Gram-positive 
bacteria, and yeasts, was tested by the microdilution broth 
assay to determine the MIC. In comparison with the parent 
peptide, the incorporation of Aib residues sharply increases 
the activity of the peptide against Gram-positive bacte-
ria, as shown by its lower MICs in Table 1. More specifi-
cally, the MIC of the analog carrying Aib residues is eight-
fold lower against S. epidermidis strains or 16-fold lower 
against S. capitis 1. Furthermore, the antibacterial activity 
of [Aib1,10,18]-Esc(1–21) becomes even stronger against S. 

aureus, with a 32-fold lower MIC than that of Esc(1–21). 
Interestingly, in line with what previously found for the 
de novo designed P19 peptide (Giangaspero et al. 2001), 

the presence of Aib residues within the peptide sequence 
does not significantly affect the activity of the peptide 
against Gram-negative bacteria, as indicated by the same 
MIC values to those of the parent peptide (Table 1), with 
the exception of E. coli ATCC 25922 towards which the 
analog results to be only twice as powerful as Esc(1–21). 
In addition, the anti-yeast activity is not significantly influ-
enced by the presence of Aib residues, and the MIC against 

Fig. 1  Helical wheel plots 
of the primary structure of 
Esc(1–21) (a) and its (Aib1,10,18) 
analog (b)

Table 1  Antimicrobial activity of Esc(1–21) and [Aib1,10,18]-
Esc(1–21)

a Values are those obtained from at least three of four independent 
experiments

Microorganisms MIC (µM)

Esc(1–21) [Aib1,10,18]-Esc(1–21)

Gram-negative bacteria

 Acinetobacter baumannii ATCC 
19606

2 2

 Escherichia coli ATCC 25922 4 2

 Escherichia coli D21 2 2

 Pseudomonas aeruginosa ATCC 
27853

4 4

 Yersinia pseudotuberculosis 
YPIII

1 1

Gram-positive bacteria

 Bacillus megaterium Bm11 2 0.5

 Staphylococcus aureus 6938 64 2

 Staphylococcus capitis 1 64 4

 Staphylococcus epidermidis 
ATCC 12228

16 2

 Staphylococcus epidermidis 21 16 2

 Staphylococcus hominis 1 1 1

Yeasts

 Candida albicans ATCC 10231 4 2

 Candida guillier mondii 1 1
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Candida strains is equal or twofold lower than that of 
Esc(1–21). It is very well known that the cell selectivity of 
AMPs is governed by several biophysical and biochemical 
factors, including not only the peptide’s cationicity, amphi-
pathicity, hydrophobicity, chain length, helicity, and oligo-
meric state, but also the properties of the target cell surface 
(Glukhov et al. 2005; Matsuzaki 2009). In the last 15 years, 
several studies reported that an amphipathic structure is 
a primary requirement for AMPs to be able to kill Gram-
positive bacteria and fungi, while Gram-negative bacteria 
remain susceptible to both non-helical and scrambled pep-
tides (Dathe et al. 1996, 1997; Giangaspero et al. 2001). 
However, it is not easy to provide an unequivocal explana-
tion for the difference in the activity profile of Esc(1–21) 
and its Aib-containing analog against the three classes of 
microorganisms. The different lipid composition existing 
between the membrane of Gram-positive and Gram-nega-
tive bacteria or fungi certainly plays a crucial role in deter-
mining the feasibility of the peptide’s insertion into the 
hydrophobic core of the phospholipid bilayer, which results 
in membrane destabilization/perturbation and microbial 
death (Epand et al. 2007; Epand and Vogel 1999). In addi-
tion, differences in the cell wall architecture of the target 
microorganism would contribute to variations in the pep-
tides’ antimicrobial efficacy. Indeed, before reaching the 
target, cytoplasmic membrane AMPs need to interact with 
lipopolysaccharides of the outer membrane that surrounds 
the cell wall in Gram-negative bacteria (Bhunia et al. 2009, 
2010; Domadia et al. 2010). Differently, a thicker pepti-
doglycan or a glucan–rich layer is present in the cell wall 
of Gram-positive bacteria or fungi, respectively (Free 2013; 
Schaffer and Messner 2005). Presumably, according to the 
previous studies (Giangaspero et al. 2001), more stringent 
structural requirements of a peptide may favor its translo-
cation through the peptidoglycan barrier of Gram-positive 
bacteria into the cytoplasmic membrane. This observation 
may at least in part justify the lower MIC values found for 
the more helical [Aib1,10,18]-Esc(1–21) compared with the 
parent Esc(1–21) against these bacterial strains.

Peptides’ effect on viability of mammalian cell lines

The effect of Aib introduction within the primary struc-
ture of Esc(1–21) on the viability of eukaryotic cells was 
studied by the MTT assay on different types of mamma-
lian epithelial cell lines: the human alveolar lung epithelial 
A549 cells and the human keratinocyte HaCaT cells. As 
reported in Fig. 2a, viability of A549 cells after exposure 
to [Aib1,10,18]-Esc(1–21) at concentrations 2–4 µM is not 
significantly reduced and there is no significant difference 
between the two peptides.

Similarly, when [Aib1,10,18]-Esc(1–21) is analyzed 
against HaCaT cells (Fig. 2b), any marked reduction in the 

number of metabolically active cells is obtained within the 
peptide concentrations of 2–4 µM compared with the harm-
less parent peptide. These findings suggest that [Aib1,10,18]-
Esc(1–21) is not toxic to mammalian cells when used at 
its growth inhibitory concentrations against Gram-positive 
bacteria (Table 1). Note, however, that when the Aib-con-
taining analog is tested at higher concentrations, i.e., 16, 
32, and 64 µM, against A549 cells, cell viability decreases 
to ~60, 20, and 5 %, respectively (Fig. 2a) or even further 
when the peptide is assayed against keratinocytes (Fig. 2b). 
As reported in Fig. 2c and d, the cytotoxicity of [Aib1,10,18]-
Esc(1–21) is only slightly increased after a long-term pep-
tide treatment (24 h), indicating that an irreversible damage 
has been caused to the cells.

Note that the higher cytotoxicity of the more helical 
Aib-containing Esc(1–21) is in agreement with the previ-
ous findings showing that the ease of α-helix formation and 
stability are important factors for the mammalian mem-
brane perturbation and cell lysis (Gazit et al. 1994; Pouny 
et al. 1992; Shai and Oren 1996; Strahilevitz et al. 1994).

Circular dichroism

Far-UV CD spectra of Esc(1–21) and its (Aib1,10,18) analog 
were acquired in three different solvents: water, TFE, and 
100-mM sodium dodecyl sulfate (SDS) aqueous solution 
(Fig. 3a, b). In water, both peptides exhibit a random coil 
structure, while in TFE and micellar SDS aqueous solu-
tion, they adopt an overall helical conformation. In both 
membrane-mimicking environments, each spectrum shows 
two negative maxima near 205 and 222 nm and one posi-
tive maximum at 195 nm, indicative of a right-handed heli-
cal conformation for both peptides (Beychock 1967). The 
ellipticity ratio R = [θ]222/[θ]205 calculated in TFE and SDS 
solution evidenced a predominant α-helical conformation 
for both analogs (Mangoni and Shai 2011).

RSDS RTFE

Esc(1–21) 0.76 0.76

[Aib1,10,18]-Esc(1–21) 0.92 0.75

The CD results outlined above would seem to suggest 
that the two compounds are conformationally similar. How-
ever, a significant difference emerges from the analysis of 
the CD spectra collected in water/TFE mixtures of varying 
composition (Fig. 3c, d). Indeed, for each peptide, the set of 
spectra is characterized by an isodichroic point at 203 nm, 
consistent with a two-state transition from the unordered 
conformation in water to the helical structure in 100 % 
TFE. The helical content of Esc(1–21) increases sharply 
with increasing TFE percentage from 20 to 50 % and to 
a lower extent from 50 to 100 % TFE (Fig. 3c), whereas 
the Aib-containing analog appears to be much more helical 
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than the parent peptide already at 20 % TFE, and its CD 
spectra vary little at higher TFE percentages (Fig. 3d).

Nuclear magnetic resonance analysis

The 2D-NMR spectra of Esc(1–21) and its (Aib1,10,18) 
analog were recorded in TFE solution. The proton reso-
nances were fully assigned following the Wüthrich proce-
dure (Wüthrich 1986).

The NOESY spectra in TFE solution of both peptides 
evidenced the presence of most of NHi–NHi+1 sequential 
cross peaks, indicative of the occurrence of helical struc-
ture (Fig. 4), thus confirming the information obtained 
from CD spectra.

The NOESY fingerprint region of Esc(1–21) shows the 
CαHi → NHi+2 and CαHi → NHi+3 cross peaks, diagnostic 
of helical conformation (Fig. 4a), even if a CαHi → NHi+4 
cross peak, characteristic of α-helical structure could be 
detected only in the Phe3–Ala7 segment (although the 
extensive overlapping of the signals might hamper their 
detection in other portions of the sequence).

The fingerprint region of the NOESY spectrum of the 
(Aib1,10,18) analog results better resolved (Fig. 4b). A 

number of connectivities are necessarily missing, because 
the quaternary Aib residues (at sequence positions 1, 10, 
and 18) lack the α hydrogen atom. Nevertheless, in addi-
tion to the CαHi → NHi+2 and CαHi → NHi+3 cross peaks 
(the latter in a larger number if compared to the parent pep-
tide), two CαHi → NHi+4 are also evident at the level of the 
Phe3–Ala7 and Leu15–Leu19 segments.

A comparison of the conformationally relevant signa-
tures extracted from the NOESY spectra of Esc(1–21) and 
its (Aib1,10,18) analog is reported in Fig. 5. Overall, in the 
C-terminal portion of the (Aib1,10,18) analog, the number 
of connectivities consistent with a helical conformation is 
more abundant than in the corresponding region of Esc(1–
21). Therefore, both peptides are largely helical, but the 
introduction of Aib residues appears to increase the popula-
tion and stability of the helix in the otherwise more flexible 
C-terminal domain of Esc(1–21).

Conclusions and perspectives

In this work, we demonstrated that the increased alpha-
helical content of Esc(1–21), obtained by incorporation of 

Fig. 2  Peptides’ effect on the viability of A549 cells (a, c) or HaCaT 
cells (b, d). Cells were plated in wells of a microtiter plate, at 4 × 104 
cells/well in culture medium, as described in the Experimental sec-
tion. After overnight incubation at 37 °C in a 5 % CO2 atmosphere, 
the medium was replaced with 100-µl fresh medium supplemented 
with the peptides at different concentrations. After 2 h (a, b) or 24 h 
(c, d) of peptide treatment, cell viability was determined by the MTT 

reduction to insoluble formazan. Cell viability is expressed as per-
centage with respect to the control (cells not treated with the pep-
tide). Data points represent the mean of triplicate samples ± SEM. 
The data of the wild-type peptide Esc(1–21) on HaCaT cells were 
taken from our previous work (Di Grazia et al. 2015a). The levels of 
statistical significance between the two peptides are: ***p < 0.001; 
****p < 0.0001
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three non-proteinogenic Aib residues at positions 1, 10, and 
18 (as shown by CD and NMR studies) is sufficient to pro-
voke a dramatic increase in the peptide’s activity against 
Gram-positive bacteria without significantly increasing its 

toxicity towards epithelial cells at antimicrobial concentra-
tions. This suggests that the Aib designed analog is a better 
candidate than the wild-type peptide for the development of 
a new drug against Gram-positive bacterial infections, such 

Fig. 3  Far-UV CD spectra of: a Esc(1–21) and b [Aib1,10,18]-Esc(1–21) in three different environments: water, TFE, and 100 mM SDS solution; 
c Esc(1–21) and d [Aib1,10,18]-Esc(1–21) in water, 20 % TFE, 50 % TFE, and 100 % TFE (peptide concentration 1 mM)
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as those associated with the human skin or the lung (Lee 
et al. 2015; Soufi and Soufi 2016). Nevertheless, consider-
ing the toxicity of this analog at concentrations higher than 
the MICs, it would also be useful to develop this peptide 

for further applications, such as those related to the usage 
of friendly biocides against Gram-positive bacterial com-
munities on metal surfaces in marine engineering sys-
tems, e.g., pipelines of the offshore oil and gas industry, to 

Fig. 4  Fingerprint region of 
the H/H-NOESY spectrum of 
Esc(1–21) (a) and [Aib1,10,18]-
Esc(1–21) (b) (600 MHz, 1.1 
and 1.4 mM, respectively, 
in TFE-d2 solution, 298 K). 
The CαHi → NHi+2 (red), 
CαHi → NHi+3 (green), and 
CαHi → NHi+4 (blue) cross 
peaks, diagnostic of helical 
conformation, are highlighted
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prevent substantial corrosion problems and contamination 
of agricultural lands (Godwin and Akpan 2014; Schwermer 
et al. 2008).
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