

Effect of organic co-solvents in the evaluation of the hydroxyl radical scavenging activity by the 2-deoxyribose degradation assay: the paradigmatic case of α -lipoic acid

Andrea Brizzolari^a, Giuseppe M. Campisi^a, Enzo Santaniello^{a,b} Nima Razzaghi-Asl^c,
Luciano Saso^d, and Mario C. Foti^{e*}

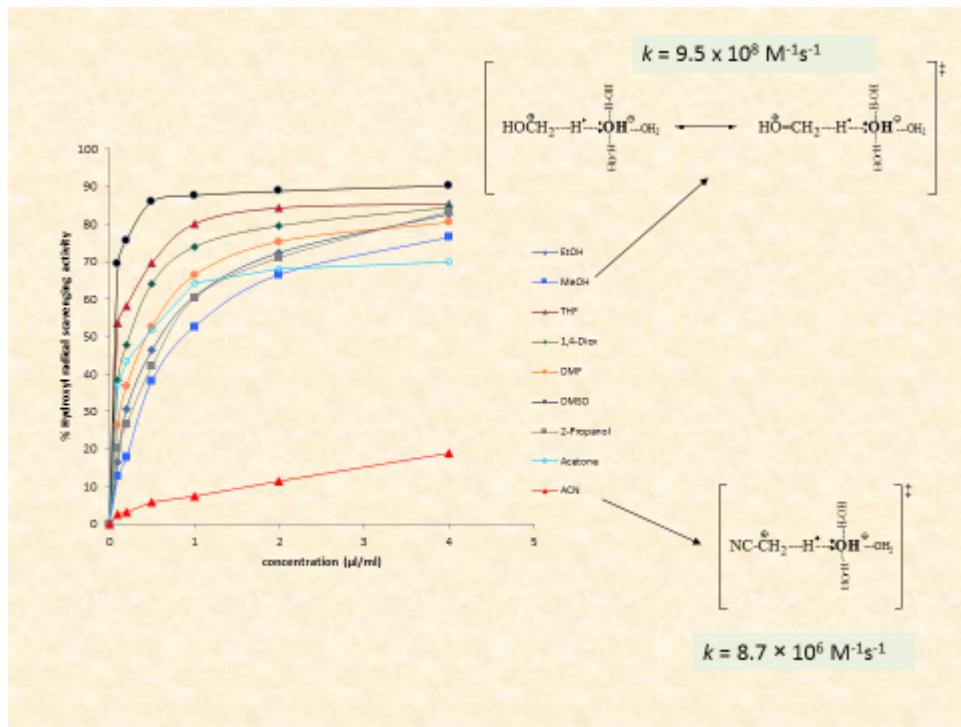
^a*Dipartimento di Scienze della Salute, Università degli Studi di Milan, c/o Ospedale S. Paolo, Via A. di Rudini, 8-20142, Milano, Italy*

^b*Present affiliation: Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano - Milan, Italy*

^c*Department of Medicinal Chemistry and Drugs & Advanced Sciences Research Center, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.*

^d*Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro, 5-00185 Rome, Italy*

^e*Istituto di Chimica Biomolecolare del CNR
via Paolo Gaifami 18, 95126 Catania (Italy)*


* Corresponding Authors:

Email: mario.foti@cnr.it

Istituto di Chimica Biomolecolare del CNR

Tel. +39 095 733 8343

Graphical Abstract

Abstract

The 2-deoxyribose degradation assay (2-DR assay) is an *in vitro* method broadly used for evaluating the scavenging activity against the hydroxyl radical (HO^\bullet). One of the major drawbacks of the assay, however, is that only water soluble compounds can be tested for their radical-scavenging activity. Lipoic acid (LA) is an excellent scavenger of HO^\bullet but it exhibits a low solubility in the aqueous milieu of the 2-DR assay and a high tendency to polymerize under a variety of conditions. We used LA as a paradigmatic substrate to evaluate the effect of several organic co-solvents in increasing its solubility. Most of these solvents, however, demonstrated to be potent scavengers of HO^\bullet making their use in the 2-DR assay improper. On the other hand, acetonitrile showed a remarkably low reactivity toward HO^\bullet (rate constant $\sim 8.7 \times 10^6 \text{ M}^{-1}\text{s}^{-1}$) which allowed us to use it as a co-solvent in the preparation of stock solutions of LA $\sim 5 \text{ mM}$. We therefore evaluated the radical-scavenging activity of LA by the 2-DR assay in a relatively large range of concentrations, 1 – 200 μM . We found that the rate constant for LA + HO^\bullet is diffusion-controlled ($\sim 1 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$ in water at 25 °C) and uninfluenced by the presence of small quantities of acetonitrile. Therefore, the use of acetonitrile in the 2-DR assay does not interfere with the test and may increase the solubility of the radical scavengers.

Keywords: 2-deoxyribose degradation assay, hydroxyl radical, scavenging activity, lipoic acid, acetonitrile.

List of abbreviations:

2-DR: 2-deoxyribose

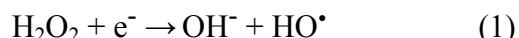
DMF: Dimethylformamide

DMSO: Dimethylsulfoxide

EDTA: Ethylenediaminetetraacetic acid

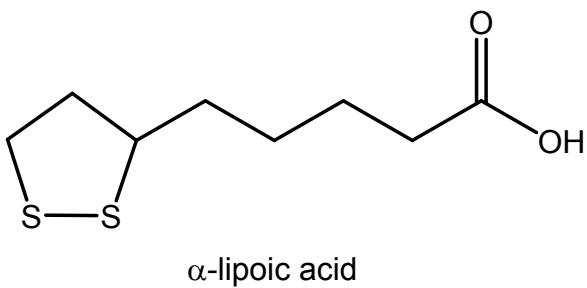
LA: (*R,S*)-lipoic acid

MDA: Malondialdehyde


ROS: Reactive oxygen species

TBA: Thiobarbituric acid

1. Introduction


The hydroxyl radical HO^\bullet is a short-lived species (half-life in solution $\sim 10^{-9}$ s) [1] that has many important roles in biochemistry as well as in waste-water and atmospheric chemistries. This radical is able to react with essentially all organic molecules with rate constants approaching the diffusional limit. This is particularly the case in water, where the rate constants can reach $10^9 - 10^{10} \text{ M}^{-1}\text{s}^{-1}$ making the biologic systems very vulnerable to oxidative damage which can eventually cause cell death. As will be shown later, H-atom abstractions from organic substrates by HO^\bullet occur very quickly in water whereas in acetonitrile or other solvents devoid of (abstractable) H-atoms or double bonds (e.g., 1,1,2-trifluoro-1,2,2-trichloroethane, Freon 113) these reactions take place at a lower rate [2]. The hydrophobic regions of biological cells are therefore more resilient to attacks by HO^\bullet [2]. On the other hand, this radical contributes to the maintenance of a balanced atmospheric composition through radical-chain oxidations that destroy organic pollutants released in the atmosphere [3,4]. The HO^\bullet radical also removes water pollutants including organic and inorganic compounds and bacteria, and thus is important in waste-water treatment processes [4].

In biological systems, reactive oxygen species (ROS), which include HO^\bullet and other oxygen radicals, are produced as byproducts of aerobic metabolism [5]. Incomplete transfer of electrons to dioxygen O_2 yields: the superoxide radical anion $\text{O}_2^{\bullet-}$ by a one-electron reduction; hydrogen peroxide H_2O_2 by a two-electron reduction; and hydroxyl radical $\text{HO}^\bullet + \text{HO}^\bullet$ formed from a three-electron reduction of O_2 . Therefore, H_2O_2 can easily form the hydroxyl radical HO^\bullet by a one-electron reduction as exemplified in reaction 1. The reductant necessary in reaction 1 can be:

i) the superoxide radical anion $\text{O}_2^{\bullet-}$ in the presence of $\text{Fe}^{3+}/\text{Fe}^{2+}$ (or $\text{Cu}^{2+}/\text{Cu}^{1+}$ or other transition metal ions) as a catalyst (iron-catalyzed Haber-Weiss reaction) [6]; *ii)* ferrous salts (Fenton reaction) [7]; *iii)* ascorbic acid with or without iron involvement [6,8]. Furthermore, several other reactions that account for the formation of HO^\bullet *in vivo* are known [9]. Whatever the origin, all ROS are harmful to human health because they initiate free radical-catalyzed oxidations of biomolecules such as DNA, proteins, lipids of low-density lipoprotein (LDL) and cell membranes, polysaccharides [5] with major consequences for life. Therefore, molecules able to

“capture and deactivate” free radicals (antiradicals and antioxidants) are very important because they have the power to protect the biochemical heritage of the cells. There are several “assays” for measuring the antiradical/antioxidant abilities of compounds according to the radicals involved [10,11]. In the case of the HO[•] radical, the 2-deoxyribose assay (see below) is largely utilized. This method, however, suffers from a serious limitation because the solvent in the assay is water and many potential anti-HO[•] compounds are insoluble in this solvent. By employing a well-known (sparingly soluble in water) scavenger of HO[•], namely, α -lipoic acid (LA, see Figure 1), we explored the effects of several water-soluble organic co-solvents on the 2-DR assay with the aim of improving the solubility of α -lipoic acid. The results of this exploration are presented in this paper.

Figure 1. Structure of (R,S)- α -lipoic acid.

2. Materials and Methods

2.1. Reagents and solutions

All compounds and solvents were purchased from Sigma-Aldrich Co. (Italy) and were of analytical grade. All solutions were prepared in distilled water. Stock solutions of 2-deoxyribose (25 mM) and phosphate buffer (pH 7.4) were prepared and kept in a refrigerator at 4-6 °C until use. A stock solution of EDTA (10 mM) was prepared at room temperature and pH 7 following the method of Lopes and colleagues [12]. Fresh stock solutions of 10 mM FeCl₃, 2 mM H₂O₂ and 0.5 mM ascorbic acid were prepared daily. FeCl₃ was dissolved in 0.1 M HCl. 0.5 ml of 10 mM FeCl₃ were mixed with 9.5 ml of 10 mM EDTA to obtain Fe³⁺-EDTA complex (500 μ M Fe³⁺). Fresh solutions of the tested organic compounds were prepared daily. Stock solution of 1% TBA (w/v) was prepared in 50 mM NaOH and was used within one week.

Aqueous solutions of methanol, ethanol, 2-propanol, dimethyl sulfoxide, THF, acetone, 1,4-dioxane, DMF and acetonitrile were prepared at various concentrations in distilled water. Then, 200 μ l of these solutions were added to the mixture prepared as described in section 2.3 in place of LA. The final concentration of the solvents ranged from 0.1 μ l \times ml $^{-1}$ to 4 μ l \times ml $^{-1}$. The assay procedure was identical to that described in section 2.3.

2.2. Preparation of Stock Solutions of α -Lipoic Acid

Stock solutions of 500 μ M LA (5.16 mg of LA in 50 mL of 20 mM phosphate buffer) in phosphate buffer at pH 7.4 were obtained by treating the initial suspension with ultrasound (15 min. at 40 °C). These solutions were then diluted so as to have a final concentration of LA in the assay in the range 1 – 100 μ M. At pH 7.4, LA is almost completely dissociated because its pKa is 4.82 [13], and given the amphiphilic structure of the anion it is likely that in these aqueous solutions the LA anion aggregates in micelles [14].

Limpid stock solutions of 5 mM LA in water/acetonitrile 98:2 and 95:5 v/v were prepared by treating the initial suspension of LA with ultrasound for 10 – 15 minutes at room temperature. These solutions were used to prepare the samples for the 2-DR assay at final concentrations of LA in the range 1 – 200 μ M. The quantity of acetonitrile present in these final solutions was kept constant at 2 μ L/mL (for the solutions prepared with the 95% water/acetonitrile solution) and 0.8 μ L/mL (for the solutions prepared with the 98% water/acetonitrile solution). Despite the low concentration of acetonitrile, these LA solutions were limpid and stable because the pre-solubilization with larger quantities of acetonitrile (2 – 5%) facilitated the process of solubilization in water.

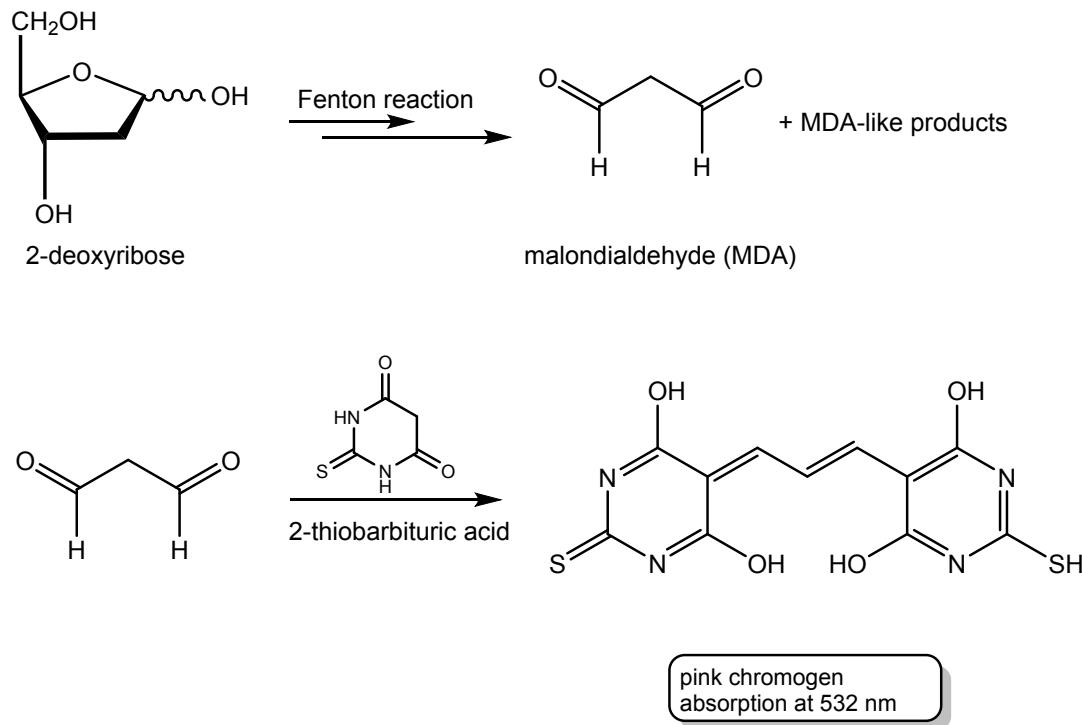
2.3. The 2-Deoxyribose Assay of α -Lipoic Acid in phosphate buffer

The 2-DR assay was performed following the protocol reported in ref. [15] which is briefly described here for a typical experiment. In a screw capped glass tube, 100 μ l of 50 μ M Fe $^{3+}$ -EDTA, 100 μ l of 200 μ M H₂O₂, 200 μ l of 5 mM 2-DR and 200 μ l of 20 mM phosphate buffer (pH 7.4) were sequentially added. Then, 200 μ l of LA solutions (see, Section 2.2), diluted so as to achieve the final concentration range of 1 - 100 μ M, were added. The reaction was finally initiated by adding 200 μ l of 100 μ M ascorbic acid to a final volume of 1 ml at 25 °C. After 40 min, the reaction was stopped by the addition of 1 ml of 4% (v/v) phosphoric acid; then, 1 ml of

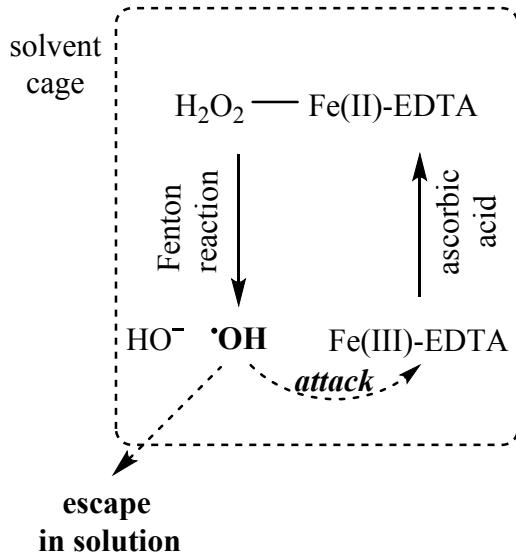
1% (w/v) TBA was added. The test-tube was therefore placed for 15 min in a hot water bath (90 – 95 °C) to develop a pink color. Then, the test-tube was cooled down at room temperature and the absorbance was recorded at 532 nm. A reference test was made by replacing the LA solution with 200 µL of buffer. All tests were performed in triplicate. The error was ±10 – 15%.

2.4. The 2-DR Assay of α -Lipoic Acid in water/acetonitrile

Stock water/acetonitrile solutions of LA (5 mM) were daily prepared as described in Section 2.2. These solutions were used to prepare samples for the 2-DR assay at concentrations of LA spanning a larger range (1 – 200 µM) than the one in phosphate buffer.


The concentration of acetonitrile in the final solutions of the 2-DR assay was kept constant at 2 and 0.8 µL mL⁻¹ (see Section 2.2). A reference test was made by replacing the LA solution with 200 µL of water/acetonitrile. The assay procedure was identical to that described in section 2.3.

3. Results and discussion

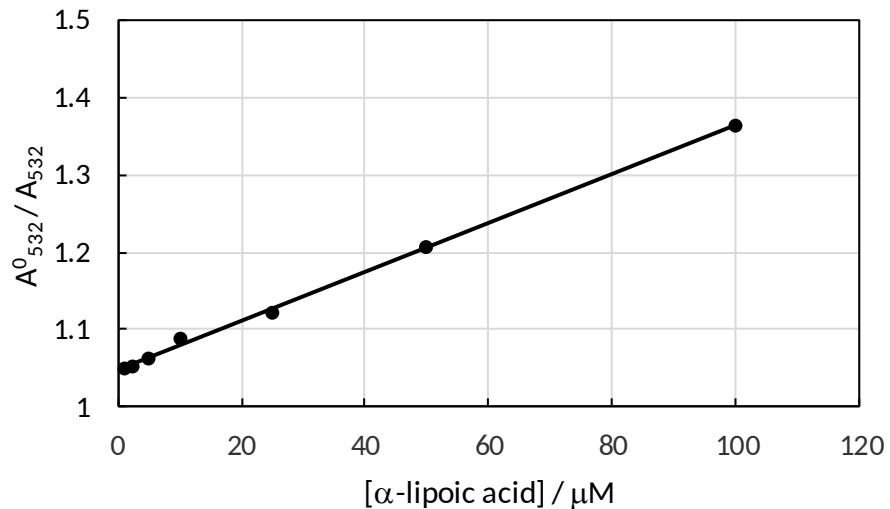

The HO[•] radical reacts very quickly with the pentose 2-deoxyribose (2-DR) in aqueous solutions ($k_{2\text{DR}} = 3.1 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$) to give a mixture of compounds [16]. Some of these compounds, when heated at acidic pHs, transform into malondialdehyde (MDA) and other carbonyl reactive species generally referred to as MDA-like products, which are detected by reaction with 2-thiobarbituric acid (TBA). This reaction produces a pink chromogen with $\lambda_{\text{max}} = 532 \text{ nm}$, see Scheme 1. The HO[•] radicals are generated by dissolving Fe(III)-EDTA, H₂O₂ and ascorbic acid in water. Ascorbic acid reduces Fe³⁺ to Fe²⁺ and the latter produces HO[•] through the “Fenton reaction” with H₂O₂ [7]. It has been observed that the reaction of Fe²⁺-EDTA with H₂O₂ is unlikely to occur via an outer-sphere electron-transfer mechanism [7b]. The first step in this process is suggested to be the formation of a transient complex Fe²⁺-EDTA••H₂O₂ which decomposes to HO[•] radical [7b], see Scheme 2.

The large reactivity of HO[•] toward EDTA ($k = 2.76 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$ [17]) and the fact that the generation of the HO[•] radicals takes place in the vicinity of Fe(III)-EDTA, make it possible that some fraction of HO[•] reacts *in cage* with the iron complex (Scheme 2). The remaining fraction of

HO^\cdot escapes in solution where can be scavenged by 2-DR. In the presence of LA (or any other HO^\cdot scavenger), a *competition* kinetics is established since LA competes with the sugar for HO^\cdot preventing therefore the formation of MDA and MDA-like compounds. The absorbance of the solution at 532 nm after treatment with TBA allows therefore to obtain the rate constant for the reaction of HO^\cdot with LA.

Scheme 1. Reaction scheme from 2-deoxyribose to the pink chromogen $(\text{TBA})_2\text{-MDA}$.

Scheme 2. Generation of HO[•] radicals *via* the Fenton reaction in H₂O₂ + Fe³⁺-EDTA + ascorbic acid mix. Some fraction of the HO[•] radicals attacks *in cage* the complex Fe³⁺-EDTA (dotted curved arrow) because of the high rate of HO[•] + EDTA and the proximity of the complex; the remaining (probably small) fraction diffuses freely in solution.


The kinetic treatment of the reaction gives the equation,

$$\frac{A_{532}^0}{A_{532}} = 1 + \frac{k_{LA}[LA]}{k_{2DR}[2 - DR]} \quad (2)$$

where A_{532} and A_{532}^0 are the absorbances at 532 nm in the presence and in the absence of LA, respectively (see Section 2.3); k_{LA} and k_{2DR} the rate constants of LA and 2-DR for the reaction with HO[•]. This equation is valid because the formation of HO[•] is slow [17] and its stationary concentration is small in comparison with the concentrations of LA.

Equation 2 shows that a plot A_{532}^0 / A_{532} against [LA] should be a straight line of slope $k_{LA} / (k_{2DR} \times [2-DR])$ from which the rate constant k_{LA} is obtained ($k_{2DR} = 3.1 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$ [16] and $[2-DR] = 1 \text{ mM}$, see Section 2.3). Figure 2 shows the straight-line obtained with our data acquired in the range of LA concentration 1 – 100 μM (higher concentrations were achieved upon previous solubilisation in water/acetonitrile, see below). The slope is 3200 M⁻¹ from which we calculate that k_{LA} is equal to $3200 \times 3.1 \times 10^9 \times 1 \times 10^{-3} \approx 1 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$ (in water at 25 °C). Our

rate constant appears to be in good agreement with several previously published values of this rate constant, *e.g.* $4.7 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$ [18]; $1.92 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$ [19]; $3.0 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$ [20].

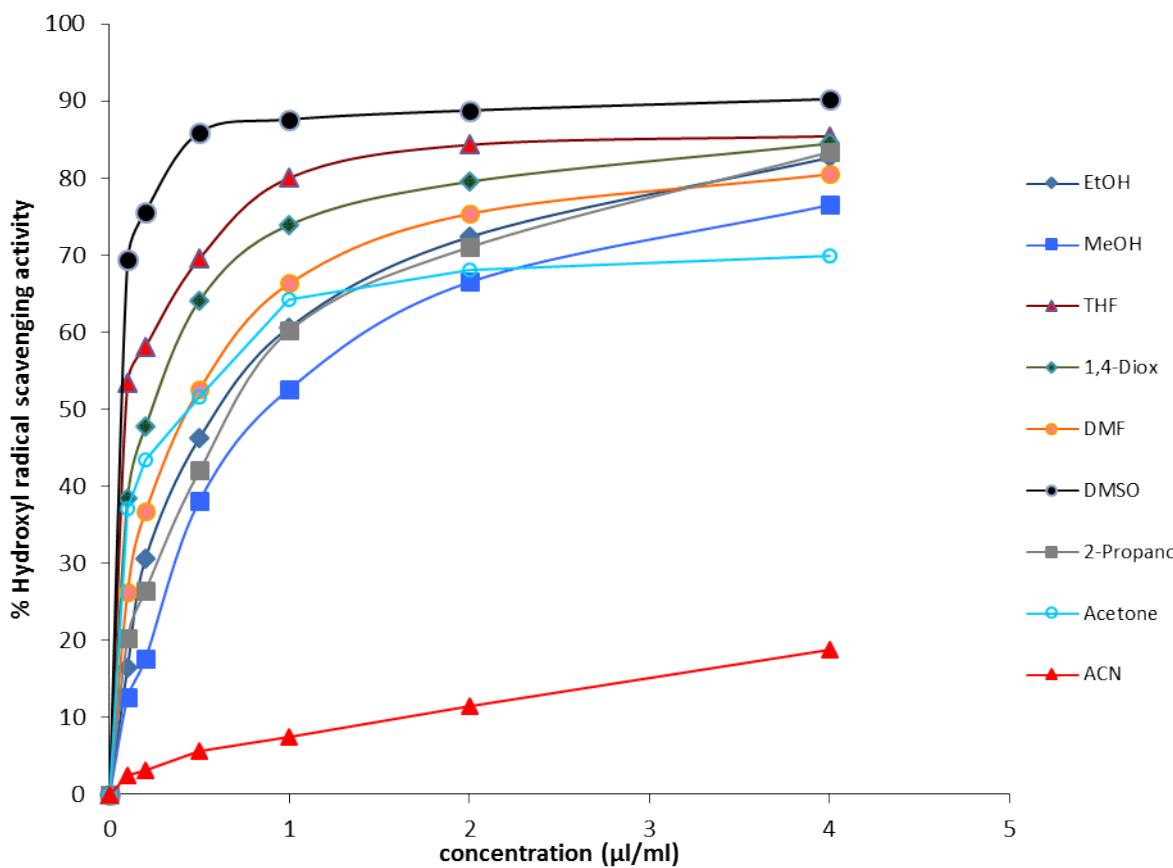
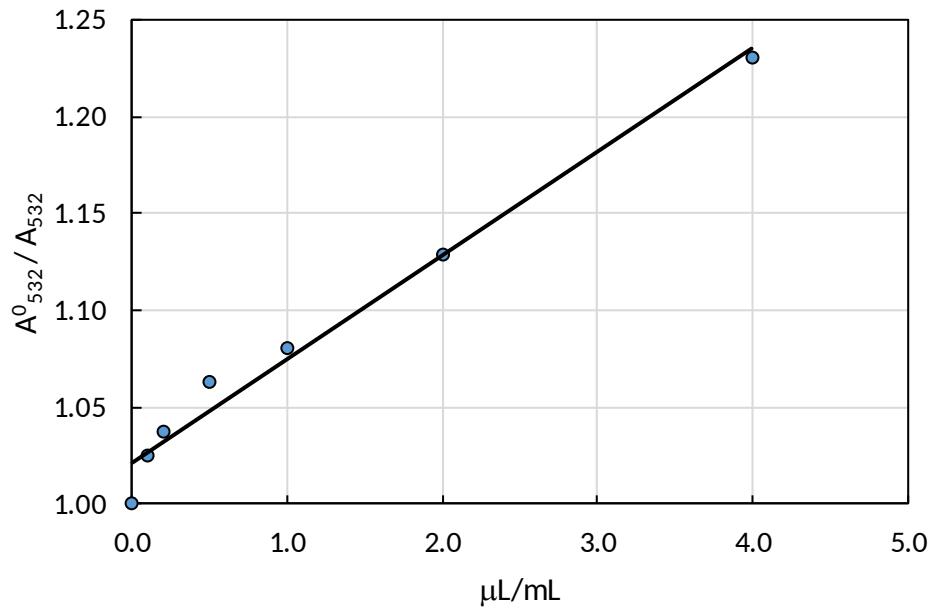


Figure 2. Plot of A_532^0 / A_532 versus [LA]. The slope of the straight line is equal to $3.2 \times 10^3 \text{ M}^{-1}$ and the R -squared regression coefficient is 0.998. The rate constant for the $\text{HO}^\cdot + \text{LA}$ reaction is calculated from the slope (see text) to be *ca.* $1 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$ (in water at 25°C). The error is *ca.* $\pm 10\%$.


Several controls must be employed before using the 2-DR assay [9]. Here, we want to recall the reader's attention on one issue: the solubility of the scavengers in the assay milieu, a problem well recognized and stated in a leading methodological paper [20] but generally overlooked by most of the assay users. In fact, many possible scavengers of HO^\cdot are poorly soluble in water and hence they cannot be assayed. This makes the use of a water-soluble organic co-solvent largely desirable, though, organic solvents, like most organic molecules, react quickly with HO^\cdot , therefore interfering with the test.

However, we surprisingly observed (as others, [2,21-24]) that acetonitrile was "poorly" reactive toward the HO^\cdot radical while other solvents (acetone, DMSO, DMF, THF, EtOH, MeOH, 2-propanol, 1,4-diox) reacted very rapidly. In Figure 3, the HO^\cdot scavenging activity (equal to $(1 - A_{532} / A_{532}^0) \times 100$) of the solvents is shown. Under our experimental conditions, acetonitrile was able at a concentration of 4 $\mu\text{L/mL}$ to capture only 19% of the HO^\cdot radicals while the other solvents scavenged 70 – 90% of the radicals, see Figure 3. By representing again A_532^0 / A_{532} against [acetonitrile], see Figure 4, we found that the rate constant for the reaction

$\text{HO}^\bullet + \text{CH}_3\text{CN}$ in water was only $8.7 \times 10^6 \text{ M}^{-1}\text{s}^{-1}$ *i.e.* several orders of magnitude lower than those of 2-DR, LA and the other solvents. This value agrees well with the value of $2.2 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$ reported by Neta and Schuler [21]. Other highly reactive oxygen-centred radicals show little reactivity toward acetonitrile [22], *which is often used as a solvent in the reactions of these species*. The reason for this reduced reactivity seems to be related to the highly polar transition state of these reactions.

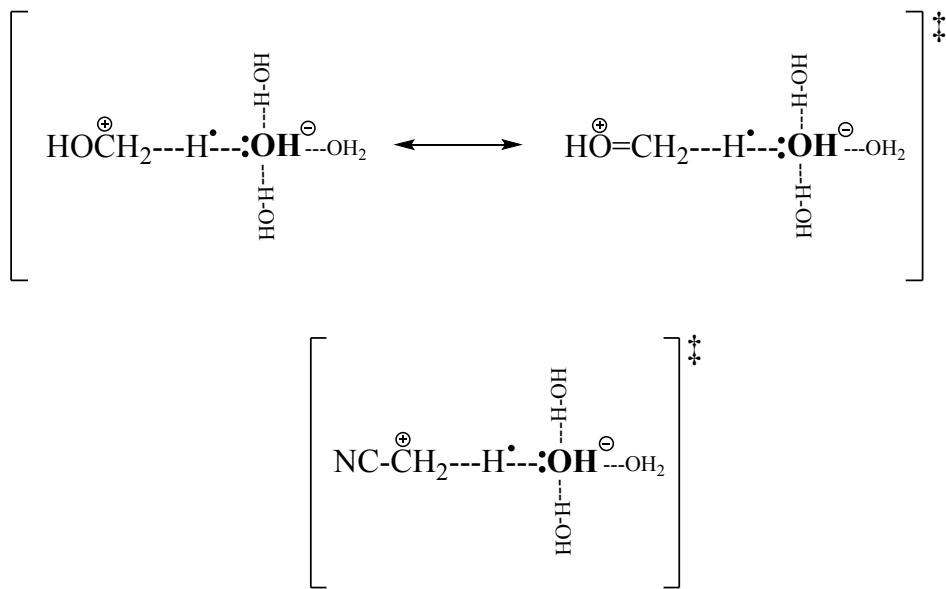


Figure 3. Scavenging ability of several organic solvents toward the HO^\bullet radical measured as % of HO^\bullet eliminated from the solution in competition with 2-DR, *see text*. The calculation was done with the equation: % of scavenged $\text{HO}^\bullet = (1 - A_{532}/A_{532}^0) \times 100$. The concentration of the solvents ranged from 0.1 to 4 μL per mL of solution.

Figure 4. Plot of the ratio A^0_{532} / A_{532} against [acetonitrile] (expressed as μL of acetonitrile per mL of solution). The R -squared regression coefficient is 0.98 and the slope (after conversion of $\mu\text{L}/\text{mL}$ in mol/L) is 2.794 M^{-1} from which the rate constant for $\text{HO}^\bullet + \text{CH}_3\text{CN}$ is calculated to be $8.7 \times 10^6 \text{ M}^{-1}\text{s}^{-1}$. The error is ca. $\pm 15\%$.

Tanko et al. [2] reported that the H-atom abstraction from hydrocarbons (R-H) by HO^\bullet in water is much faster than in acetonitrile, the rate constants in water being nearly two orders of magnitude greater [2]. The presence of electron withdrawing groups in the hydrocarbon RH decreases its reactivity while electron donating groups increase it, see Figure 5. These kinetic data and solvent effects support the idea that the transition state for R-H + HO^\bullet is polar. Computational studies [2, 23] show that the oxygen atom of the hydroxyl radical increases its negative charge in the transition state (a positive charge is therefore formed in R-H). Hence, the reinforcement of the hydrogen bonding with water determines a strong stabilization of the transition state and an acceleration of the H-atom abstraction. Electron-donating groups enhance the stability of the transition state because they support the delocalization of the positive charge. On the other hand, electron-withdrawing groups (e.g. the nitrile group in $\text{CH}_3\text{-C}\equiv\text{N}$) prevent or reduce the polarization of the transition state, see Figure 5.

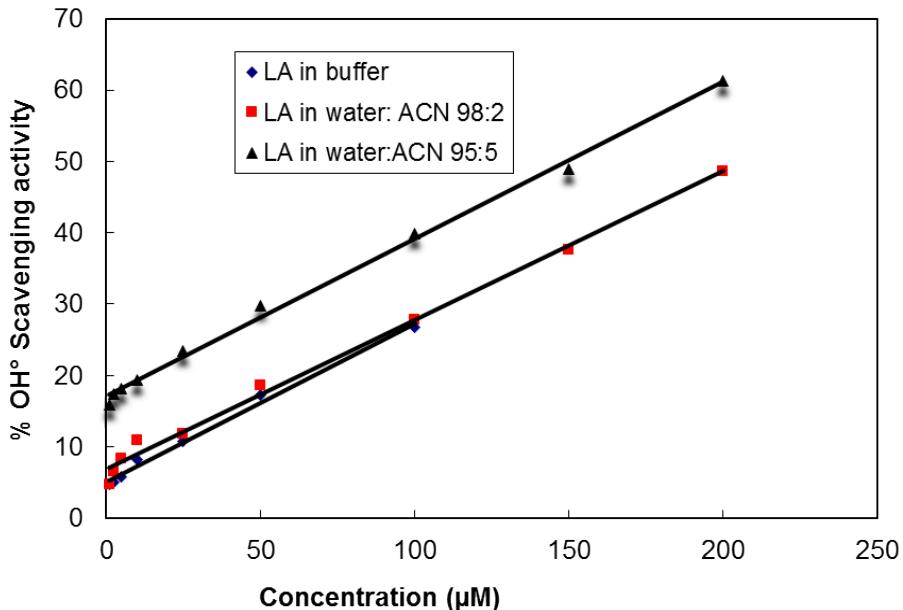


Figure 5. Transition states for H-atom abstraction by HO[•] from methanol and acetonitrile. The negative charge developed on the HO[•] radical implies the formation of a partial positive charge on the carbon atom of the C-H bond, which is partially delocalised over the oxygen atom in CH₃OH but for CH₃CN, the -C≡N group is strongly electron-withdrawing and less able to support the delocalization of the positive charge. As a consequence, the rate constant of the reaction with methanol is 95-fold greater than that with acetonitrile (see ref. [2]).

The low reactivity of acetonitrile toward HO[•] and consequently the low interference with the 2-DR assay allowed us to use it as a co-solvent (2 – 5 % v/v) in the preparation of stock solutions at high concentration of LA (5 mM) (in preliminary experiments, LA was dissolved in a 90:10 water/acetonitrile mixture but the solvent interference was too strong to ensure the reliability of the results). We could therefore explore the reactivity of LA in a larger range of concentrations relative to that reached in the simple phosphate buffer, *i.e.* 1 – 200 μM *vs.* 1 – 100 μM. Figure 6 shows that the reactivity of LA toward HO[•] is not affected by CH₃CN because the slopes of the three straight-lines (in other terms, the rate constants) are identical and the linearity of the plot within 1 – 200 μM is excellent.

In conclusion, the solubility of LA is significantly improved by CH₃CN. This solvent is characterized by a remarkably low reactivity toward HO[•], the rate constant being *only* 8.7×10⁶ M⁻¹s⁻¹. Calculations show that the transition state of the reactions involving HO[•] is highly polar and thus the nitrile group of CH₃CN, being electron-withdrawing, does not support the

delocalization of the charge making the reaction relatively slow. We took advantage of this slow reactivity by using CH_3CN as a co-solvent in our 2-DR assay. The reactivity of LA toward HO^\bullet was therefore explored in a relatively large range of concentrations. We found that the rate constant of $\text{LA} + \text{HO}^\bullet$ in water is diffusion controlled, being *ca.* $1 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$, therefore making LA an excellent scavenger of HO^\bullet radicals.

Figure 6. Scavenging activity of LA against HO^\bullet , $(1 - A_{532}/A_{532}^0) \times 100$, in water and water containing acetonitrile ($\leq 2 \mu\text{L}/\text{mL}$). The slope of the three straightlines is identical, therefore indicating that the rate constant of $\text{HO}^\bullet + \text{LA}$ does not change. The larger intercept of the straightline with solid black triangles is due to the reaction of HO^\bullet with CH_3CN which is present at a larger concentration ($2 \mu\text{L}/\text{mL}$) in this data set.

Acknowledgements

We thank the Università degli Studi di Milano for financial support. We also thank Prof. James M. Tanko of the Virginia Tech for his relevant suggestions regarding the low reactivity of acetonitrile.

References

- [1] H. Sies, Strategies of antioxidant defense, *Eur. J. Biochem.* 215 (1993) 213 – 219.
- [2] S. Mitroka, S. Zimmeck, D. Troya, and J. M. Tanko, How Solvent Modulates Hydroxyl Radical Reactivity in Hydrogen Atom Abstractions, *J. Am. Chem. Soc.* 132 (2010) 2907 – 2913.
- [3] P. S. Monks, Gas-phase radical chemistry in the troposphere, *Chem. Soc. Rev.* 34 (2005) 376–395.
- [4] S. Gligorovski, R. Strekowski, S. Barbat, and D. Vione, Environmental Implications of Hydroxyl Radicals ($\bullet\text{OH}$), *Chem. Rev.* 115 (2015) 13051–13092.
- [5] M. C. Foti and R. Amorati, ROS and Phenolic Compounds, in *Reactive Oxygen Species in Biology and Human Health*, edited by Shamim I. Ahmad, CRC Press 2016, pp. 49 – 65.
- [6] D. A. Rowley and B. Halliwell, Formation of hydroxyl radicals from hydrogen peroxide and iron salts by superoxide- and ascorbate-dependent mechanisms: relevance to the pathology of rheumatoid disease, *Clin. Sci.* 64 (1983) 649 – 653.
- [7] a) S. Chen and P. Schopfer, Hydroxyl-radical production in physiological reactions. A novel function of peroxidase, *Eur. J. Biochem.* 260 (1999) 726 – 735; b) S. Goldstein, D. Meyerstein, G. Czapiski, The Fenton Reagents, *Free Radical Biology & Medicine*, 15 (1993) 435-445.
- [8] A. J. Nappy and E. Vass, Hydroxyl Radical Production by Ascorbate and Hydrogen Peroxide, *Neurotoxicity Research*, 2 (2000) 343-355.
- [9] B. Halliwell and J. M. C. Gutteridge in *Free Radicals in Biology and Medicine*, 3th edition, Oxford University Press, 1999.
- [10] R. Amorati, L. Valgimigli, Advantages and limitations of common testing methods for antioxidants. *Free Radical Res.* 49 (2015) 633–649.
- [11] M. C. Foti, Use and Abuse of the DPPH \bullet Radical, *J. Agric. Food Chem.* 63 (2015) 8765–8776.
- [12] G.K.B. Lopes, H.M. Schulman, and M. Hermes-Lima, Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. *Biochim Biophys Acta* 1999, 1472: p. 142-152.

[13] E. Junquera, E. Aicart, Thermodynamic Analysis of the Binding of a Hepatoprotectant Drug, Thioctic Acid, by α -Cyclodextrin. *Journal of Pharmaceutical Sciences*, 1999, 88 (6), 626-631.

[14] Balakirev, M., G. Schoehn, and J. Chroboczek, Lipoic acid-derived amphiphiles for redox-controlled DNA delivery. *Chem & Biol* 7 (2000) 813-819.

[15] T. C. Genaro-Mattos, L. T. Dalvi, R. G. Oliveira, J. S. Ginani, M. Hermes-Lima, Reevaluation of the 2-deoxyribose assay for determination of free radical formation. *Biochim Biophys Acta* 1790 (2009) 1636-1642.

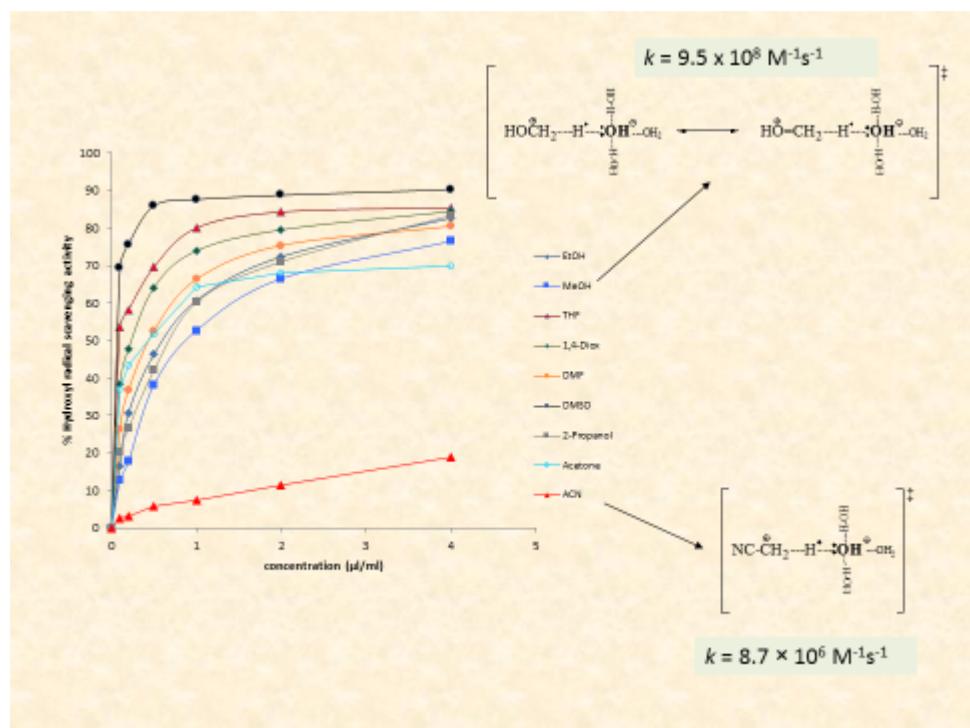
[16] J. M. C. Gutteridge and B. Halliwell, The deoxyribose assay: an assay both for 'free' hydroxyl radical and for site-specific hydroxyl radical production, *Biochemical Journal Letters* 253 (1988), 932-933.

[17] C. Walling, Fenton's reagent revisited, *Accounts of Chemical Research* 8 (1975) 125 – 131.

[18] B. C. Scott, O. I. Aruoma, P. J. Evans, C. O'Neill, A. Van Der Vliet, C. E. Cross, H. Tritschler, B. Halliwell, Lipoic and Dihydrolipoic Acids as Antioxidants: a Critical Evaluation, *Free Radical Research* 20 (1994) 119-133.

[19] L. Packer, S. Roy, C. K. Sen, α -Lipoic acid: a metabolic antioxidant and potential redox modulator of transcription. In *Antioxidants in Disease Mechanisms and Therapy*, Ed. Helmut Sies. Academic Press, San Diego, 1997, p. 85.

[20] O. I. Aruoma, Deoxyribose assay for detecting hydroxyl radicals. *Methods Enzymol* (1994) 233: p. 57-66.


[21] P. Neta and R. H. Schuler, Rate Constants for the Reaction of O^{\cdot} Radicals with Organic Substrates in Aqueous Solution, *The Journal of Physical Chemistry* 79 (1975) 1-6.

[22] D. V. Avila, C. E. Brown, K. U. Ingold and J. Lusztyk, Solvent Effects on the Competitive β -Scission and Hydrogen Atom Abstraction Reactions of the Cumyloxy Radical. Resolution of a Long-standing Problem, *J. Am. Chem. Soc.*, 1993, 115, 466-470.

[23] M. P. DeMatteo, J. S. Poole, X. Shi, R. Sachdeva, P. G. Hatcher, C. M. Hadad and M. S. Platz, On the Electrophilicity of Hydroxyl Radical: A Laser Flash Photolysis and Computational Study, *J. Am. Chem. Soc.* 2005, 127, 7094-7109.

[24] G. M. Rodríguez-Muñiz, M. L. Marin, V. Lhiaubet-Vallet, M. A. Miranda, Reactivity of Nucleosides with a Hydroxyl Radical in Non-aqueous Medium, *Chem. Eur. J.* 2012, 18, 8024 – 8027.

Graphical Abstract

Effect of organic co-solvents in the evaluation of the hydroxyl radical scavenging activity by the 2-deoxyribose degradation assay: the paradigmatic case of α -lipoic acid

Andrea Brizzolari^a, Giuseppe M. Campisi^a, Enzo Santaniello^{a,b} Nima Razzaghi-Asl^c,
Luciano Saso^d, and Mario C. Foti^{e*}

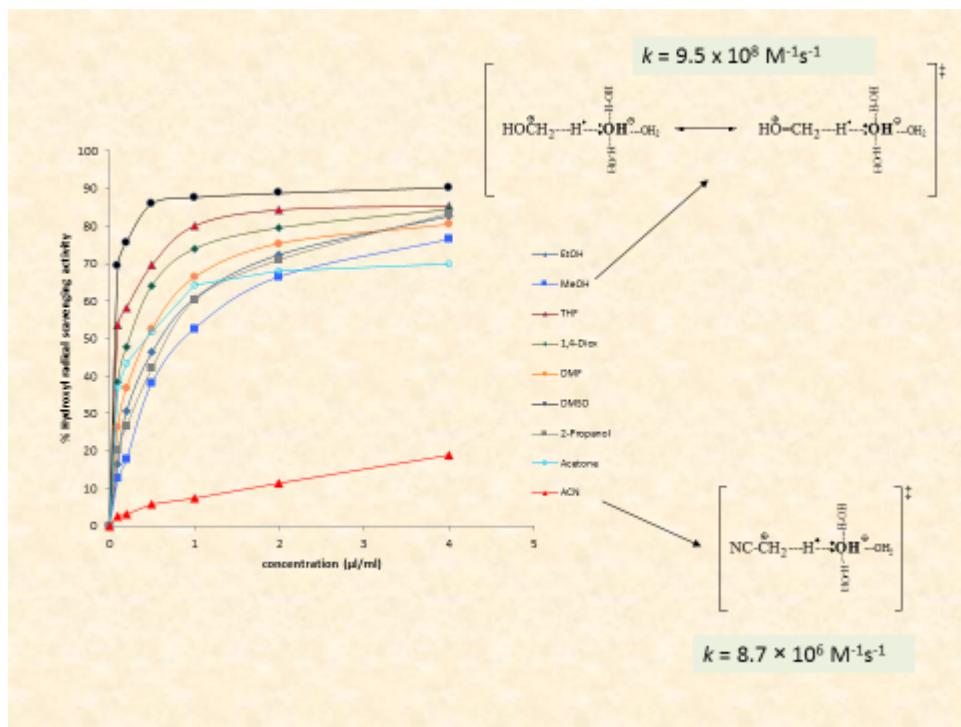
^a*Dipartimento di Scienze della Salute, Università degli Studi di Milan, c/o Ospedale S. Paolo, Via A. di Rudini, 8-20142, Milano, Italy*

^b*Present affiliation: Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano - Milan, Italy*

^c*Department of Medicinal Chemistry and Drugs & Advanced Sciences Research Center, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.*

^d*Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro, 5-00185 Rome, Italy*

^e*Istituto di Chimica Biomolecolare del CNR
via Paolo Gaifami 18, 95126 Catania (Italy)*


* Corresponding Authors:

Email: mario.foti@cnr.it

Istituto di Chimica Biomolecolare del CNR

Tel. +39 095 733 8343

Graphical Abstract

Abstract

The 2-deoxyribose degradation assay (2-DR assay) is an *in vitro* method broadly used for evaluating the scavenging activity against the hydroxyl radical (HO^\bullet). One of the major drawbacks of the assay, however, is that only water soluble compounds can be tested for their radical-scavenging activity. Lipoic acid (LA) is an excellent scavenger of HO^\bullet but it exhibits a low solubility in the aqueous milieu of the 2-DR assay and a high tendency to polymerize under a variety of conditions. We used LA as a paradigmatic substrate to evaluate the effect of several organic co-solvents in increasing its solubility. Most of these solvents, however, demonstrated to be potent scavengers of HO^\bullet making their use in the 2-DR assay improper. On the other hand, acetonitrile showed a remarkably low reactivity toward HO^\bullet (rate constant $\sim 8.7 \times 10^6 \text{ M}^{-1}\text{s}^{-1}$) which allowed us to use it as a co-solvent in the preparation of stock solutions of LA $\sim 5 \text{ mM}$. We therefore evaluated the radical-scavenging activity of LA by the 2-DR assay in a relatively large range of concentrations, 1 – 200 μM . We found that the rate constant for LA + HO^\bullet is diffusion-controlled ($\sim 1 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$ in water at 25 °C) and uninfluenced by the presence of small quantities of acetonitrile. Therefore, the use of acetonitrile in the 2-DR assay does not interfere with the test and may increase the solubility of the radical scavengers.

Keywords: 2-deoxyribose degradation assay, hydroxyl radical, scavenging activity, lipoic acid, acetonitrile.

List of abbreviations:

2-DR: 2-deoxyribose

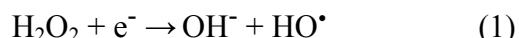
DMF: Dimethylformamide

DMSO: Dimethylsulfoxide

EDTA: Ethylenediaminetetraacetic acid

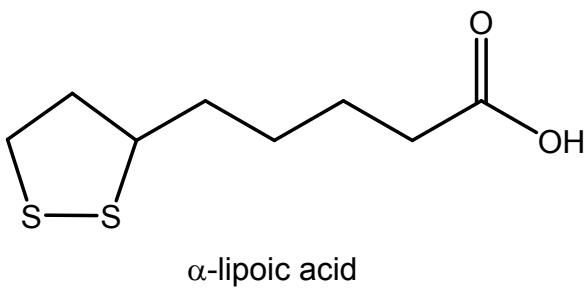
LA: (*R,S*)-lipoic acid

MDA: Malondialdehyde


ROS: Reactive oxygen species

TBA: Thiobarbituric acid

1. Introduction


The hydroxyl radical HO^\bullet is a short-lived species (half-life in solution $\sim 10^{-9}$ s) [1] that has many important roles in biochemistry as well as in waste-water and atmospheric chemistries. This radical is able to react with essentially all organic molecules with rate constants approaching the diffusional limit. This is particularly the case in water, where the rate constants can reach $10^9 - 10^{10} \text{ M}^{-1}\text{s}^{-1}$ making the biologic systems very vulnerable to oxidative damage which can eventually cause cell death. As will be shown later, H-atom abstractions from organic substrates by HO^\bullet occur very quickly in water whereas in acetonitrile or other solvents devoid of (abstractable) H-atoms or double bonds (e.g., 1,1,2-trifluoro-1,2,2-trichloroethane, Freon 113) these reactions take place at a lower rate [2]. The hydrophobic regions of biological cells are therefore more resilient to attacks by HO^\bullet [2]. On the other hand, this radical contributes to the maintenance of a balanced atmospheric composition through radical-chain oxidations that destroy organic pollutants released in the atmosphere [3,4]. The HO^\bullet radical also removes water pollutants including organic and inorganic compounds and bacteria, and thus is important in waste-water treatment processes [4].

In biological systems, reactive oxygen species (ROS), which include HO^\bullet and other oxygen radicals, are produced as byproducts of aerobic metabolism [5]. Incomplete transfer of electrons to dioxygen O_2 yields: the superoxide radical anion $\text{O}_2^{\bullet-}$ by a one-electron reduction; hydrogen peroxide H_2O_2 by a two-electron reduction; and hydroxyl radical $\text{HO}^\bullet + \text{HO}^\bullet$ formed from a three-electron reduction of O_2 . Therefore, H_2O_2 can easily form the hydroxyl radical HO^\bullet by a one-electron reduction as exemplified in reaction 1. The reductant necessary in reaction 1 can be:

i) the superoxide radical anion $\text{O}_2^{\bullet-}$ in the presence of $\text{Fe}^{3+}/\text{Fe}^{2+}$ (or $\text{Cu}^{2+}/\text{Cu}^{1+}$ or other transition metal ions) as a catalyst (iron-catalyzed Haber-Weiss reaction) [6]; *ii)* ferrous salts (Fenton reaction) [7]; *iii)* ascorbic acid with or without iron involvement [6,8]. Furthermore, several other reactions that account for the formation of HO^\bullet *in vivo* are known [9]. Whatever the origin, all ROS are harmful to human health because they initiate free radical-catalyzed oxidations of biomolecules such as DNA, proteins, lipids of low-density lipoprotein (LDL) and cell membranes, polysaccharides [5] with major consequences for life. Therefore, molecules able to

“capture and deactivate” free radicals (antiradicals and antioxidants) are very important because they have the power to protect the biochemical heritage of the cells. There are several “assays” for measuring the antiradical/antioxidant abilities of compounds according to the radicals involved [10,11]. In the case of the HO[•] radical, the 2-deoxyribose assay (see below) is largely utilized. This method, however, suffers from a serious limitation because the solvent in the assay is water and many potential anti-HO[•] compounds are insoluble in this solvent. By employing a well-known (sparingly soluble in water) scavenger of HO[•], namely, α -lipoic acid (LA, see Figure 1), we explored the effects of several water-soluble organic co-solvents on the 2-DR assay with the aim of improving the solubility of α -lipoic acid. The results of this exploration are presented in this paper.

Figure 1. Structure of (R,S)- α -lipoic acid.

2. Materials and Methods

2.1. Reagents and solutions

All compounds and solvents were purchased from Sigma-Aldrich Co. (Italy) and were of analytical grade. All solutions were prepared in distilled water. Stock solutions of 2-deoxyribose (25 mM) and phosphate buffer (pH 7.4) were prepared and kept in a refrigerator at 4-6 °C until use. A stock solution of EDTA (10 mM) was prepared at room temperature and pH 7 following the method of Lopes and colleagues [12]. Fresh stock solutions of 10 mM FeCl₃, 2 mM H₂O₂ and 0.5 mM ascorbic acid were prepared daily. FeCl₃ was dissolved in 0.1 M HCl. 0.5 ml of 10 mM FeCl₃ were mixed with 9.5 ml of 10 mM EDTA to obtain Fe³⁺-EDTA complex (500 μ M Fe³⁺). Fresh solutions of the tested organic compounds were prepared daily. Stock solution of 1% TBA (w/v) was prepared in 50 mM NaOH and was used within one week.

Aqueous solutions of methanol, ethanol, 2-propanol, dimethyl sulfoxide, THF, acetone, 1,4-dioxane, DMF and acetonitrile were prepared at various concentrations in distilled water. Then, 200 μ l of these solutions were added to the mixture prepared as described in section 2.3 in place of LA. The final concentration of the solvents ranged from 0.1 μ l \times ml $^{-1}$ to 4 μ l \times ml $^{-1}$. The assay procedure was identical to that described in section 2.3.

2.2. Preparation of Stock Solutions of α -Lipoic Acid

Stock solutions of 500 μ M LA (5.16 mg of LA in 50 mL of 20 mM phosphate buffer) in phosphate buffer at pH 7.4 were obtained by treating the initial suspension with ultrasound (15 min. at 40 °C). These solutions were then diluted so as to have a final concentration of LA in the assay in the range 1 – 100 μ M. At pH 7.4, LA is almost completely dissociated because its pKa is 4.82 [13], and given the amphiphilic structure of the anion it is likely that in these aqueous solutions the LA anion aggregates in micelles [14].

Limpid stock solutions of 5 mM LA in water/acetonitrile 98:2 and 95:5 v/v were prepared by treating the initial suspension of LA with ultrasound for 10 – 15 minutes at room temperature. These solutions were used to prepare the samples for the 2-DR assay at final concentrations of LA in the range 1 – 200 μ M. The quantity of acetonitrile present in these final solutions was kept constant at 2 μ L/mL (for the solutions prepared with the 95% water/acetonitrile solution) and 0.8 μ L/mL (for the solutions prepared with the 98% water/acetonitrile solution). Despite the low concentration of acetonitrile, these LA solutions were limpid and stable because the pre-solubilization with larger quantities of acetonitrile (2 – 5%) facilitated the process of solubilization in water.

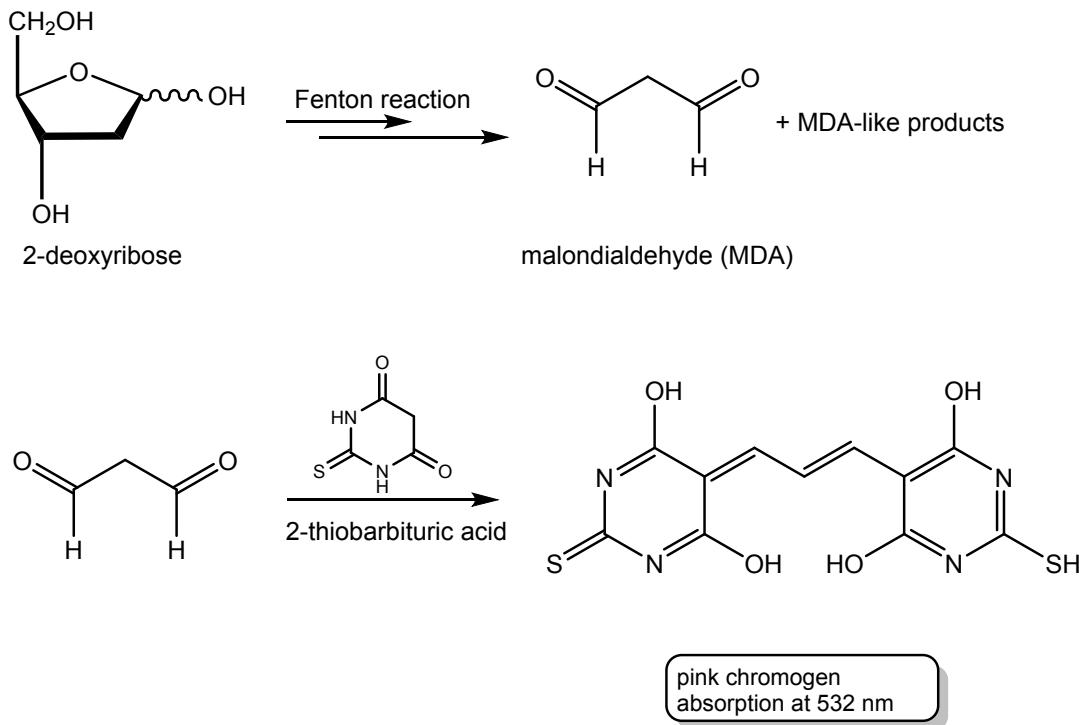
2.3. The 2-Deoxyribose Assay of α -Lipoic Acid in phosphate buffer

The 2-DR assay was performed following the protocol reported in ref. [15] which is briefly described here for a typical experiment. In a screw capped glass tube, 100 μ l of 50 μ M Fe $^{3+}$ -EDTA, 100 μ l of 200 μ M H₂O₂, 200 μ l of 5 mM 2-DR and 200 μ l of 20 mM phosphate buffer (pH 7.4) were sequentially added. Then, 200 μ l of LA solutions (see, Section 2.2), diluted so as to achieve the final concentration range of 1 - 100 μ M, were added. The reaction was finally initiated by adding 200 μ l of 100 μ M ascorbic acid to a final volume of 1 ml at 25 °C. After 40 min, the reaction was stopped by the addition of 1 ml of 4% (v/v) phosphoric acid; then, 1 ml of

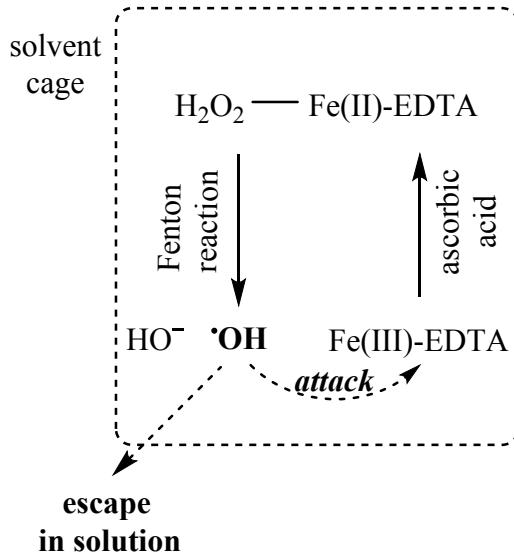
1% (w/v) TBA was added. The test-tube was therefore placed for 15 min in a hot water bath (90 – 95 °C) to develop a pink color. Then, the test-tube was cooled down at room temperature and the absorbance was recorded at 532 nm. A reference test was made by replacing the LA solution with 200 µL of buffer. All tests were performed in triplicate. The error was ±10 – 15%.

2.4. The 2-DR Assay of α -Lipoic Acid in water/acetonitrile

Stock water/acetonitrile solutions of LA (5 mM) were daily prepared as described in Section 2.2. These solutions were used to prepare samples for the 2-DR assay at concentrations of LA spanning a larger range (1 – 200 µM) than the one in phosphate buffer.


The concentration of acetonitrile in the final solutions of the 2-DR assay was kept constant at 2 and 0.8 µL mL⁻¹ (see Section 2.2). A reference test was made by replacing the LA solution with 200 µL of water/acetonitrile. The assay procedure was identical to that described in section 2.3.

3. Results and discussion

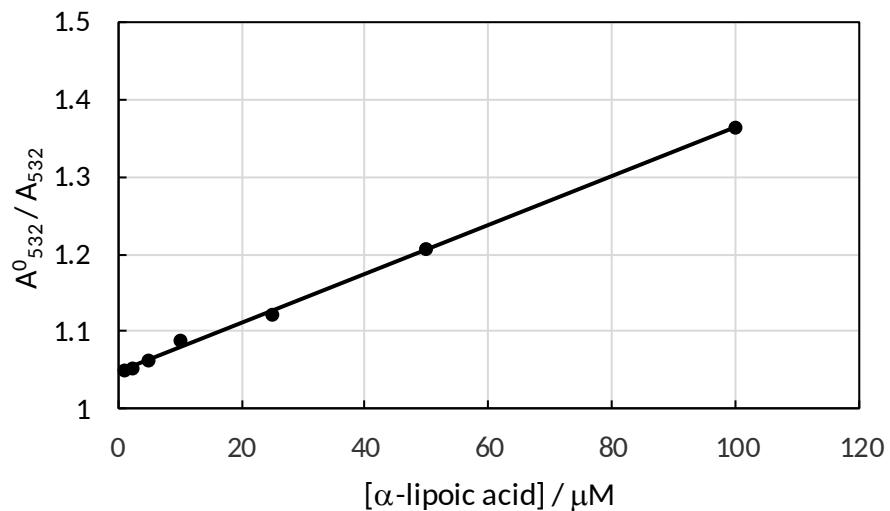

The HO[•] radical reacts very quickly with the pentose 2-deoxyribose (2-DR) in aqueous solutions ($k_{2\text{DR}} = 3.1 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$) to give a mixture of compounds [16]. Some of these compounds, when heated at acidic pHs, transform into malondialdehyde (MDA) and other carbonyl reactive species generally referred to as MDA-like products, which are detected by reaction with 2-thiobarbituric acid (TBA). This reaction produces a pink chromogen with $\lambda_{\text{max}} = 532 \text{ nm}$, see Scheme 1. The HO[•] radicals are generated by dissolving Fe(III)-EDTA, H₂O₂ and ascorbic acid in water. Ascorbic acid reduces Fe³⁺ to Fe²⁺ and the latter produces HO[•] through the “Fenton reaction” with H₂O₂ [7]. It has been observed that the reaction of Fe²⁺-EDTA with H₂O₂ is unlikely to occur via an outer-sphere electron-transfer mechanism [7b]. The first step in this process is suggested to be the formation of a transient complex Fe²⁺-EDTA••H₂O₂ which decomposes to HO[•] radical [7b], see Scheme 2.

The large reactivity of HO[•] toward EDTA ($k = 2.76 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$ [17]) and the fact that the generation of the HO[•] radicals takes place in the vicinity of Fe(III)-EDTA, make it possible that some fraction of HO[•] reacts *in cage* with the iron complex (Scheme 2). The remaining fraction of

HO^\cdot escapes in solution where can be scavenged by 2-DR. In the presence of LA (or any other HO^\cdot scavenger), a *competition* kinetics is established since LA competes with the sugar for HO^\cdot preventing therefore the formation of MDA and MDA-like compounds. The absorbance of the solution at 532 nm after treatment with TBA allows therefore to obtain the rate constant for the reaction of HO^\cdot with LA.

Scheme 1. Reaction scheme from 2-deoxyribose to the pink chromogen (TBA)₂-MDA.

Scheme 2. Generation of HO[•] radicals *via* the Fenton reaction in H₂O₂ + Fe³⁺-EDTA + ascorbic acid mix. Some fraction of the HO[•] radicals attacks *in cage* the complex Fe³⁺-EDTA (dotted curved arrow) because of the high rate of HO[•] + EDTA and the proximity of the complex; the remaining (probably small) fraction diffuses freely in solution.


The kinetic treatment of the reaction gives the equation,

$$\frac{A_{532}^0}{A_{532}} = 1 + \frac{k_{LA}[LA]}{k_{2DR}[2 - DR]} \quad (2)$$

where A_{532} and A_{532}^0 are the absorbances at 532 nm in the presence and in the absence of LA, respectively (see Section 2.3); k_{LA} and k_{2DR} the rate constants of LA and 2-DR for the reaction with HO[•]. This equation is valid because the formation of HO[•] is slow [17] and its stationary concentration is small in comparison with the concentrations of LA.

Equation 2 shows that a plot A_{532}^0 / A_{532} against [LA] should be a straight line of slope $k_{LA} / (k_{2DR} \times [2-DR])$ from which the rate constant k_{LA} is obtained ($k_{2DR} = 3.1 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$ [16] and $[2-DR] = 1 \text{ mM}$, see Section 2.3). Figure 2 shows the straight-line obtained with our data acquired in the range of LA concentration 1 – 100 μM (higher concentrations were achieved upon previous solubilisation in water/acetonitrile, see below). The slope is 3200 M⁻¹ from which we calculate that k_{LA} is equal to $3200 \times 3.1 \times 10^9 \times 1 \times 10^{-3} \approx 1 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$ (in water at 25 °C). Our

rate constant appears to be in good agreement with several previously published values of this rate constant, *e.g.* $4.7 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$ [18]; $1.92 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$ [19]; $3.0 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$ [20].

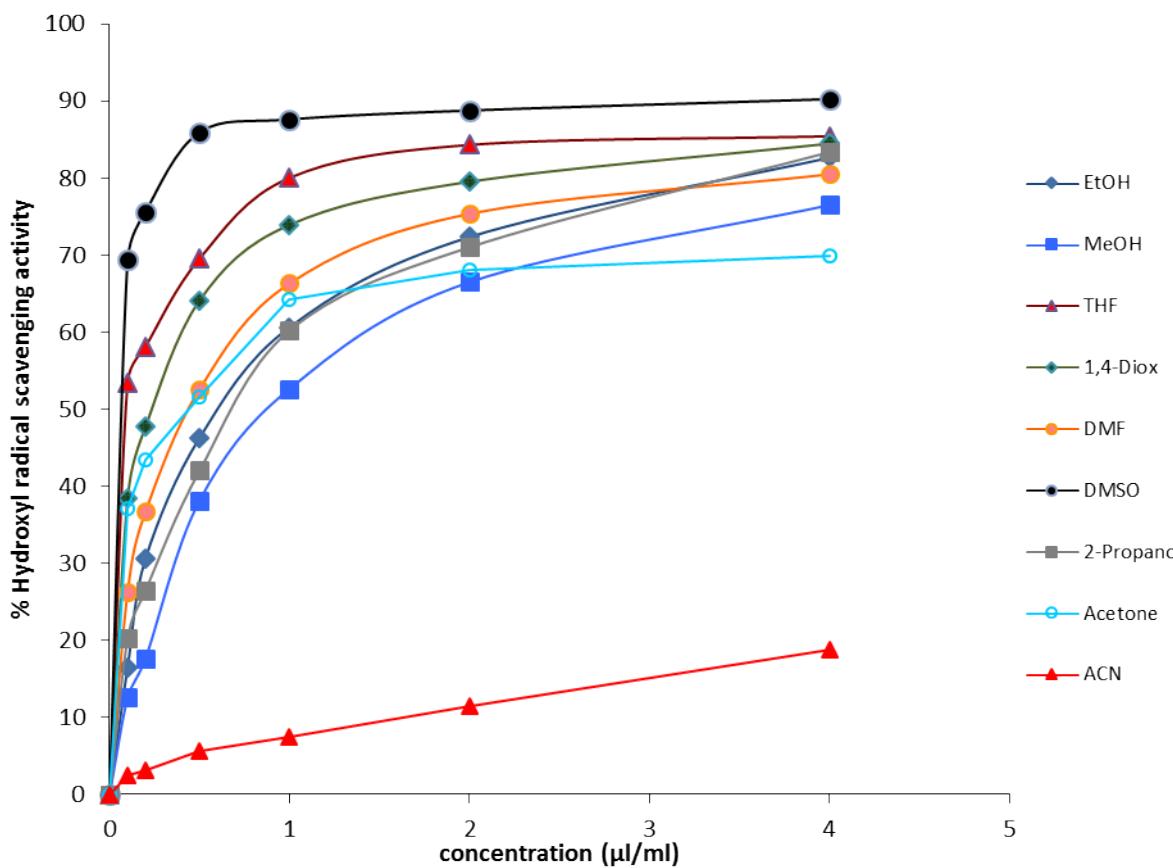
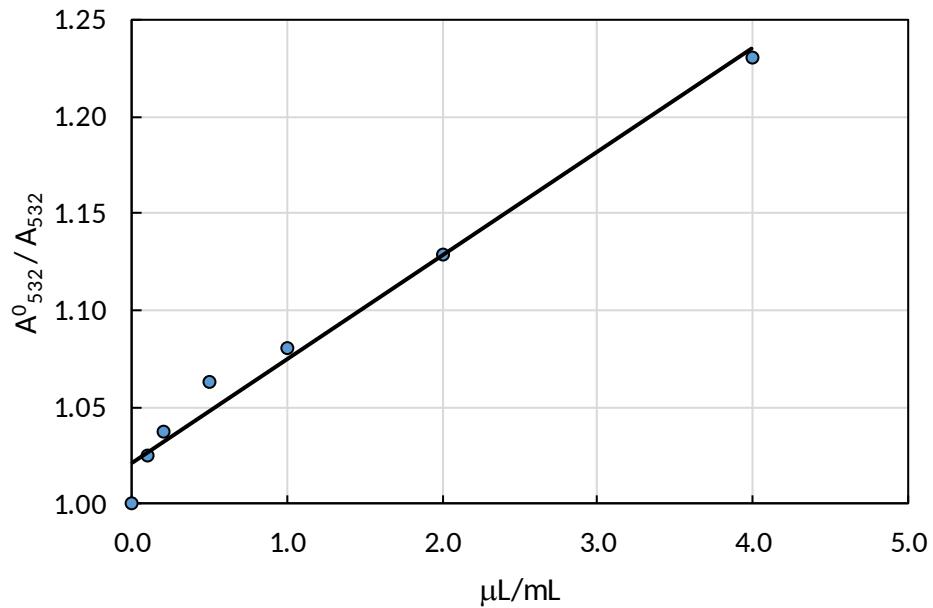


Figure 2. Plot of A_532^0 / A_532 versus [LA]. The slope of the straight line is equal to $3.2 \times 10^3 \text{ M}^{-1}$ and the R -squared regression coefficient is 0.998. The rate constant for the $\text{HO}^\cdot + \text{LA}$ reaction is calculated from the slope (see text) to be *ca.* $1 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$ (in water at 25°C). The error is *ca.* $\pm 10\%$.


Several controls must be employed before using the 2-DR assay [9]. Here, we want to recall the reader's attention on one issue: the solubility of the scavengers in the assay milieu, a problem well recognized and stated in a leading methodological paper [20] but generally overlooked by most of the assay users. In fact, many possible scavengers of HO^\cdot are poorly soluble in water and hence they cannot be assayed. This makes the use of a water-soluble organic co-solvent largely desirable, though, organic solvents, like most organic molecules, react quickly with HO^\cdot , therefore interfering with the test.

However, we surprisingly observed (as others, [2,21-24]) that acetonitrile was "poorly" reactive toward the HO^\cdot radical while other solvents (acetone, DMSO, DMF, THF, EtOH, MeOH, 2-propanol, 1,4-diox) reacted very rapidly. In Figure 3, the HO^\cdot scavenging activity (equal to $(1 - A_{532} / A_{532}^0) \times 100$) of the solvents is shown. Under our experimental conditions, acetonitrile was able at a concentration of 4 $\mu\text{L/mL}$ to capture only 19% of the HO^\cdot radicals while the other solvents scavenged 70 – 90% of the radicals, see Figure 3. By representing again A_532^0 / A_{532} against [acetonitrile], see Figure 4, we found that the rate constant for the reaction

$\text{HO}^\bullet + \text{CH}_3\text{CN}$ in water was only $8.7 \times 10^6 \text{ M}^{-1}\text{s}^{-1}$ *i.e.* several orders of magnitude lower than those of 2-DR, LA and the other solvents. This value agrees well with the value of $2.2 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$ reported by Neta and Schuler [21]. Other highly reactive oxygen-centred radicals show little reactivity toward acetonitrile [22], *which is often used as a solvent in the reactions of these species*. The reason for this reduced reactivity seems to be related to the highly polar transition state of these reactions.

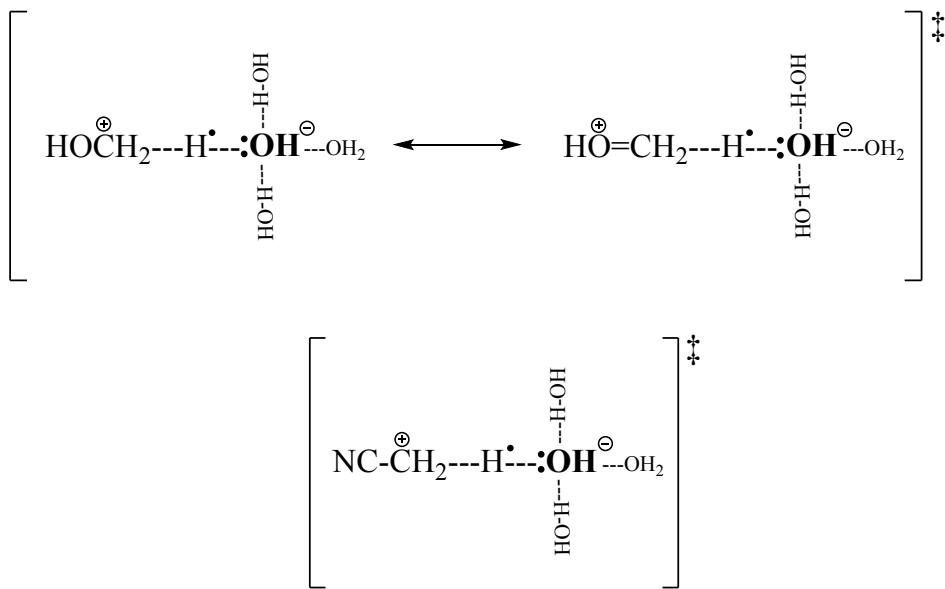


Figure 3. Scavenging ability of several organic solvents toward the HO^\bullet radical measured as % of HO^\bullet eliminated from the solution in competition with 2-DR, see text. The calculation was done with the equation: % of scavenged $\text{HO}^\bullet = (1 - A_{532}/A_{532}^0) \times 100$. The concentration of the solvents ranged from 0.1 to 4 μL per mL of solution.

Figure 4. Plot of the ratio A^0_{532} / A_{532} against [acetonitrile] (expressed as μL of acetonitrile per mL of solution). The R -squared regression coefficient is 0.98 and the slope (after conversion of $\mu\text{L}/\text{mL}$ in mol/L) is 2.794 M^{-1} from which the rate constant for $\text{HO}^\bullet + \text{CH}_3\text{CN}$ is calculated to be $8.7 \times 10^6 \text{ M}^{-1}\text{s}^{-1}$. The error is ca. $\pm 15\%$.

Tanko et al. [2] reported that the H-atom abstraction from hydrocarbons (R-H) by HO^\bullet in water is much faster than in acetonitrile, the rate constants in water being nearly two orders of magnitude greater [2]. The presence of electron withdrawing groups in the hydrocarbon RH decreases its reactivity while electron donating groups increase it, see Figure 5. These kinetic data and solvent effects support the idea that the transition state for R-H + HO^\bullet is polar. Computational studies [2, 23] show that the oxygen atom of the hydroxyl radical increases its negative charge in the transition state (a positive charge is therefore formed in R-H). Hence, the reinforcement of the hydrogen bonding with water determines a strong stabilization of the transition state and an acceleration of the H-atom abstraction. Electron-donating groups enhance the stability of the transition state because they support the delocalization of the positive charge. On the other hand, electron-withdrawing groups (e.g. the nitrile group in $\text{CH}_3\text{-C}\equiv\text{N}$) prevent or reduce the polarization of the transition state, see Figure 5.

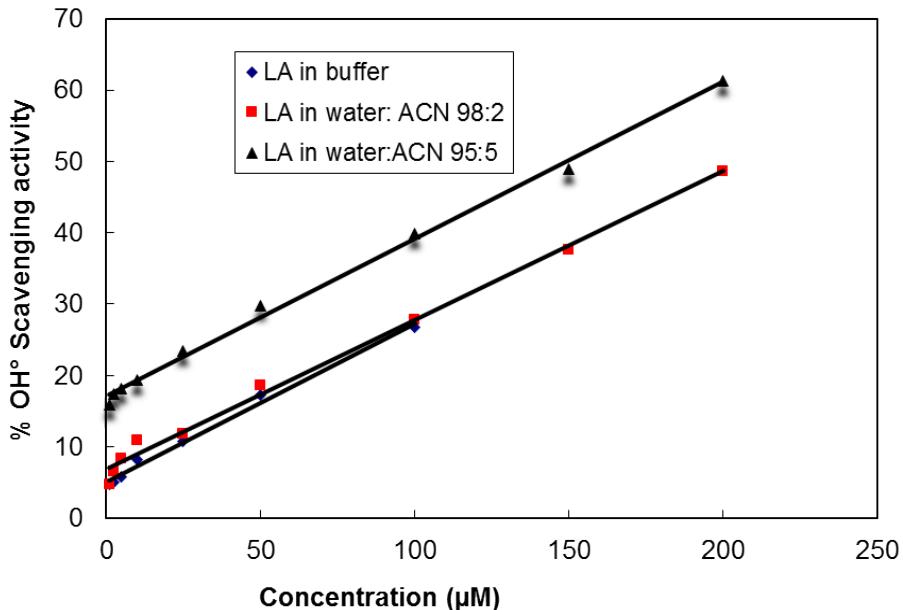


Figure 5. Transition states for H-atom abstraction by HO[•] from methanol and acetonitrile. The negative charge developed on the HO[•] radical implies the formation of a partial positive charge on the carbon atom of the C-H bond, which is partially delocalised over the oxygen atom in CH₃OH but for CH₃CN, the -C≡N group is strongly electron-withdrawing and less able to support the delocalization of the positive charge. As a consequence, the rate constant of the reaction with methanol is 95-fold greater than that with acetonitrile (see ref. [2]).

The low reactivity of acetonitrile toward HO[•] and consequently the low interference with the 2-DR assay allowed us to use it as a co-solvent (2 – 5 % v/v) in the preparation of stock solutions at high concentration of LA (5 mM) (in preliminary experiments, LA was dissolved in a 90:10 water/acetonitrile mixture but the solvent interference was too strong to ensure the reliability of the results). We could therefore explore the reactivity of LA in a larger range of concentrations relative to that reached in the simple phosphate buffer, *i.e.* 1 – 200 μM *vs.* 1 – 100 μM. Figure 6 shows that the reactivity of LA toward HO[•] is not affected by CH₃CN because the slopes of the three straight-lines (in other terms, the rate constants) are identical and the linearity of the plot within 1 – 200 μM is excellent.

In conclusion, the solubility of LA is significantly improved by CH₃CN. This solvent is characterized by a remarkably low reactivity toward HO[•], the rate constant being *only* 8.7×10⁶ M⁻¹s⁻¹. Calculations show that the transition state of the reactions involving HO[•] is highly polar and thus the nitrile group of CH₃CN, being electron-withdrawing, does not support the

delocalization of the charge making the reaction relatively slow. We took advantage of this slow reactivity by using CH_3CN as a co-solvent in our 2-DR assay. The reactivity of LA toward HO^\bullet was therefore explored in a relatively large range of concentrations. We found that the rate constant of $\text{LA} + \text{HO}^\bullet$ in water is diffusion controlled, being *ca.* $1 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$, therefore making LA an excellent scavenger of HO^\bullet radicals.

Figure 6. Scavenging activity of LA against HO^\bullet , $(1 - A_{532}/A_{532}^0) \times 100$, in water and water containing acetonitrile ($\leq 2 \mu\text{L}/\text{mL}$). The slope of the three straightlines is identical, therefore indicating that the rate constant of $\text{HO}^\bullet + \text{LA}$ does not change. The larger intercept of the straightline with solid black triangles is due to the reaction of HO^\bullet with CH_3CN which is present at a larger concentration ($2 \mu\text{L}/\text{mL}$) in this data set.

Acknowledgements

We thank the Università degli Studi di Milano for financial support. We also thank Prof. James M. Tanko of the Virginia Tech for his relevant suggestions regarding the low reactivity of acetonitrile.

References

- [1] H. Sies, Strategies of antioxidant defense, *Eur. J. Biochem.* 215 (1993) 213 – 219.
- [2] S. Mitroka, S. Zimmeck, D. Troya, and J. M. Tanko, How Solvent Modulates Hydroxyl Radical Reactivity in Hydrogen Atom Abstractions, *J. Am. Chem. Soc.* 132 (2010) 2907 – 2913.
- [3] P. S. Monks, Gas-phase radical chemistry in the troposphere, *Chem. Soc. Rev.* 34 (2005) 376–395.
- [4] S. Gligorovski, R. Strekowski, S. Barbat, and D. Vione, Environmental Implications of Hydroxyl Radicals ($\bullet\text{OH}$), *Chem. Rev.* 115 (2015) 13051–13092.
- [5] M. C. Foti and R. Amorati, ROS and Phenolic Compounds, in *Reactive Oxygen Species in Biology and Human Health*, edited by Shamim I. Ahmad, CRC Press 2016, pp. 49 – 65.
- [6] D. A. Rowley and B. Halliwell, Formation of hydroxyl radicals from hydrogen peroxide and iron salts by superoxide- and ascorbate-dependent mechanisms: relevance to the pathology of rheumatoid disease, *Clin. Sci.* 64 (1983) 649 – 653.
- [7] a) S. Chen and P. Schopfer, Hydroxyl-radical production in physiological reactions. A novel function of peroxidase, *Eur. J. Biochem.* 260 (1999) 726 – 735; b) S. Goldstein, D. Meyerstein, G. Czapiski, The Fenton Reagents, *Free Radical Biology & Medicine*, 15 (1993) 435-445.
- [8] A. J. Nappy and E. Vass, Hydroxyl Radical Production by Ascorbate and Hydrogen Peroxide, *Neurotoxicity Research*, 2 (2000) 343-355.
- [9] B. Halliwell and J. M. C. Gutteridge in *Free Radicals in Biology and Medicine*, 3th edition, Oxford University Press, 1999.
- [10] R. Amorati, L. Valgimigli, Advantages and limitations of common testing methods for antioxidants. *Free Radical Res.* 49 (2015) 633–649.
- [11] M. C. Foti, Use and Abuse of the DPPH \bullet Radical, *J. Agric. Food Chem.* 63 (2015) 8765–8776.
- [12] G.K.B. Lopes, H.M. Schulman, and M. Hermes-Lima, Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. *Biochim Biophys Acta* 1999, 1472: p. 142-152.

[13] E. Junquera, E. Aicart, Thermodynamic Analysis of the Binding of a Hepatoprotectant Drug, Thioctic Acid, by α -Cyclodextrin. *Journal of Pharmaceutical Sciences*, 1999, 88 (6), 626-631.

[14] Balakirev, M., G. Schoehn, and J. Chroboczek, Lipoic acid-derived amphiphiles for redox-controlled DNA delivery. *Chem & Biol* 7 (2000) 813-819.

[15] T. C. Genaro-Mattos, L. T. Dalvi, R. G. Oliveira, J. S. Ginani, M. Hermes-Lima, Reevaluation of the 2-deoxyribose assay for determination of free radical formation. *Biochim Biophys Acta* 1790 (2009) 1636-1642.

[16] J. M. C. Gutteridge and B. Halliwell, The deoxyribose assay: an assay both for 'free' hydroxyl radical and for site-specific hydroxyl radical production, *Biochemical Journal Letters* 253 (1988), 932-933.

[17] C. Walling, Fenton's reagent revisited, *Accounts of Chemical Research* 8 (1975) 125 – 131.

[18] B. C. Scott, O. I. Aruoma, P. J. Evans, C. O'neill, A. Van Der Vliet, C. E. Cross, H. Tritschler, B. Halliwell, Lipoic and Dihydrolipoic Acids as Antioxidants: a Critical Evaluation, *Free Radical Research* 20 (1994) 119-133.

[19] L. Packer, S. Roy, C. K. Sen, α -Lipoic acid: a metabolic antioxidant and potential redox modulator of transcription. In *Antioxidants in Disease Mechanisms and Therapy*, Ed. Helmut Sies. Academic Press, San Diego, 1997, p. 85.

[20] O. I. Aruoma, Deoxyribose assay for detecting hydroxyl radicals. *Methods Enzymol* (1994) 233: p. 57-66.

[21] P. Neta and R. H. Schuler, Rate Constants for the Reaction of O^{\cdot} Radicals with Organic Substrates in Aqueous Solution, *The Journal of Physical Chemistry* 79 (1975) 1-6.

[22] D. V. Avila, C. E. Brown, K. U. Ingold and J. Lusztyk, Solvent Effects on the Competitive β -Scission and Hydrogen Atom Abstraction Reactions of the Cumyloxy Radical. Resolution of a Long-standing Problem, *J. Am. Chem. Soc.*, 1993, 115, 466-470.

[23] M. P. DeMatteo, J. S. Poole, X. Shi, R. Sachdeva, P. G. Hatcher, C. M. Hadad and M. S. Platz, On the Electrophilicity of Hydroxyl Radical: A Laser Flash Photolysis and Computational Study, *J. Am. Chem. Soc.* 2005, 127, 7094-7109.

[24] G. M. Rodríguez-Muñiz, M. L. Marin, V. Lhiaubet-Vallet, M. A. Miranda, Reactivity of Nucleosides with a Hydroxyl Radical in Non-aqueous Medium, *Chem. Eur. J.* 2012, 18, 8024 – 8027.

Highlights

- ▶ Use of the 2-deoxyribose assay with molecules poorly soluble in water;
- ▶ Surprisingly low reactivity of acetonitrile toward the HO[•] radical;
- ▶ Polar transition state for the H-atom abstraction from hydrocarbons by HO[•];