

Real time monitoring of removal of trace compounds with PTR-MS: Biochar experimental investigation.

Davide Papurello^{a,b}, Andrea Boschetti^c, Silvia Silvestri^b, Iuliia Khomenko^{d,e}, Franco Biasioli^d

^a *Department of Energy (DENERG), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy.*

^b *Fondazione Edmund Mach, Biomass and renewable energy Unit, Via E. Mach, 1, 38010, San Michele a/A, Italy.*

^c *IMEM -Institute of Materials for Electronic and Magnetism - Italian National Research Council, Fondazione Bruno Kessler, via alla Cascata 56/C, Povo - 38123 Trento (TN).*

^d *Sensory quality unit, Department of Food quality and nutrition, Fondation Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy.*

^e *Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstr. 25, Innsbruck, Austria.*

*Corresponding author. Tel.:+393402351692. Email address: davide.papurello@polito.it

1 **Abstract**

2 The removal of trace compounds contained in a biogas from the dry anaerobic digestion of organic
3 waste was accomplished. The resulting data were monitored online with a direct injection mass
4 spectrometry technique. Biochar from the pyrolysis of recovered wood waste was adopted as
5 sorbent material. This material was selected to demonstrate the usefulness of recovered waste for
6 the energy production purposes. In fact, considering a highly efficient energy generation system,
7 such as Solid Oxide Fuel Cell, the fuel requirements are stringent in terms of trace compounds
8 concentration. Material characterization of biochar was accomplished using scanning electron
9 microscopy, energy dispersive X-ray analysis and nitrogen adsorption. The performance achieved
10 with this material is comparable with performances achieved by reference commercial carbons,
11 even if some more optimized and selective materials show better results. The main expense that
12 weighs on the service life time of biochar is the electricity consumed followed by the costs required
13 for material replacement.

14

15 **Keywords:** Adsorption, VOCs removal, Biogas, Solid Oxide Fuel Cell (SOFC), Carbon, PTRMS.

16

17

18

19

20

21

22

23

24 **Nomenclature**

25 CHO, carbonyl and carboxyl compounds;

26 D3, hexamethylcyclotrisiloxane;

27 D4, octamethylcyclotetrasiloxane;

28 D5, decamethylcyclopentasiloxane;

29 EDS, Energy Dispersive X-ray Spectroscopy;

30 GHSV, Gas Hourly Space Velocity;

31 ICE, Internal Combustion Engine;

32 L2 MM, hexamethyldisiloxane;

33 MIEC, Mixed Ionic Electronic Conducting ceramic material;

34 MSW, Municipal Solid Waste;

35 OFMSW, Organic Fraction of Municipal Solid Waste;

36 OW, Organic Waste;

37 PTR-MS, Proton Transfer Reaction Mass Spectrometer;

38 PTR-ToF-MS, Proton Transfer Reaction Time of Flight Mass Spectrometer;

39 SEM, Scanning Electron Microscopy;

40 SOFC, Solid Oxide Fuel Cell;

41 VOCs, Volatile Organic Compounds.

42

43

44

46 **1. Introduction**

47 The management of solid waste is a global issue due to population growth and environmental and
48 energy related problems. Organic waste could have an added value if considered as feedstock for
49 energy production. Advantages are related to energy production and to the reduction of pollutant
50 emissions into air, soil and water. Biogas produced from this waste can be adopted in several energy
51 generators, usually using a mechanical or an electrochemical approach to generate clean energy.
52 Carnot cycle is the key limitation of this approach in terms of efficiency and exploitability. Among
53 electrochemical systems, solid oxide fuel cells (SOFC) currently receive much attention (Papurello
54 et al., 2014; Papurello et al., 2014a; Papurello et al., 2015a; Shiratori et al., 2010; Van Herle et al.,
55 2004). SOFCs present several advantages compared to mechanical competitors for electricity
56 production (ICE, mTurbine, Rankine cycles,etc). Advantages of these systems are mainly their high
57 efficiency, low noise levels, low pollutant emissions, the availability of a wide range of suitable
58 fuels, , and the possibility to be scaled up with practically no variation in the efficiency value.
59 (Maghanki et al., 2013). Their main drawback is their low resistance to trace compounds (Blum et
60 al., 2016; Facci et al., 2016; Davide Papurello et al., 2016a, 2016b, 2016c; Torii et al., 2016; Turco
61 et al., 2016). Literature studies focus mainly on gas cleaning or on SOFC material tolerability
62 against these compounds.

63 The removal of trace compounds with sorbent materials was investigated considering the effect of
64 temperature, relative humidity and contemporary removal of several compounds to simulate real
65 conditions (Papurello et al., 2015b, 2015c, 2013). Papurello et al., (2016) showed the temperature
66 dependency on the removal performance of commercial carbons (D. Papurello et al., 2016).
67 Another parameter that affects removal performance is the relative humidity content (Barelli et al.,
68 2017; D. Papurello et al., 2016). In fact, depending on whether basic active sites are present or
69 absent, the water humidity content could have a positive or negative impact. It was demonstrated
70 that, for carbons activated with KOH and KI, the formation of water film around activated carbon

71 pores, which favors H₂S molecules dissociation. Conversely, humidity could be a problem for
72 carbons activated with metals, such as Cu or Fe. Here, the interaction between H₂S and metals
73 loaded on carbon surface results in metal sulfide (MeS) and water production. The water contained
74 in the gas matrix disadvantages the sulfur removal. As reported in literature, a relative humidity
75 value above 50% lead the adsorption capacity to zero mg/g (D. Papurello et al., 2016). Finally, the
76 multiple removal of trace compounds has to be considered. This condition is crucial for the
77 industrialization of the direct biogas to energy production systems with SOFCs. Preliminary results
78 carried out in laboratory highlighted how the contemporary presence of more than one single
79 compound, usually H₂S, causes the strong removal performance to decrease (Davide Papurello et
80 al., 2014b). All of these factors can be present at the same time in a real plant. Considering a more
81 realistic case, an experimental pilot plant for gas cleaning with ashes was investigated (Davide
82 Papurello et al., 2016d). Results showed the higher efficiency of ashes in removing H₂S, alcohols
83 and some terpenes, while the removal of thiols, siloxanes and carbonyl compounds was less
84 successful. Results obtained at the end of the experiments demonstrated that ashes are not
85 economically and technically exploitable to work with SOFC energy generators. This is due to the
86 stringent gas concentration requirements. The low cost of activated carbons and the low sulfur
87 capacity of ashes are also involved in this process. In this work, considering the philosophy of
88 circular economy, we want to prove how another waste material can be adopted for the gas cleaning
89 for SOFC applications. Biochar from the wood pyrolysis chain was selected for the removal of trace
90 compounds. Biochar has a relative structure carbon matrix with a high specific surface area and
91 high degree of porosity able to act as a surface sorbent. These features are similar to optimized
92 commercial activated carbons. Char material was tested elsewhere for the removal of only sulfur
93 compounds (Shang et al., 2016, 2013). The adsorption characteristics of biochar are a function of
94 the raw material, the production process and the temperature adopted. Ahmad et al., (2012) showed
95 how in a pyrolysis process the temperature reached for the char production is crucial for the
96 increase of surface area and porosity (Ahmad et al., 2012). Both, surface area and porosity are

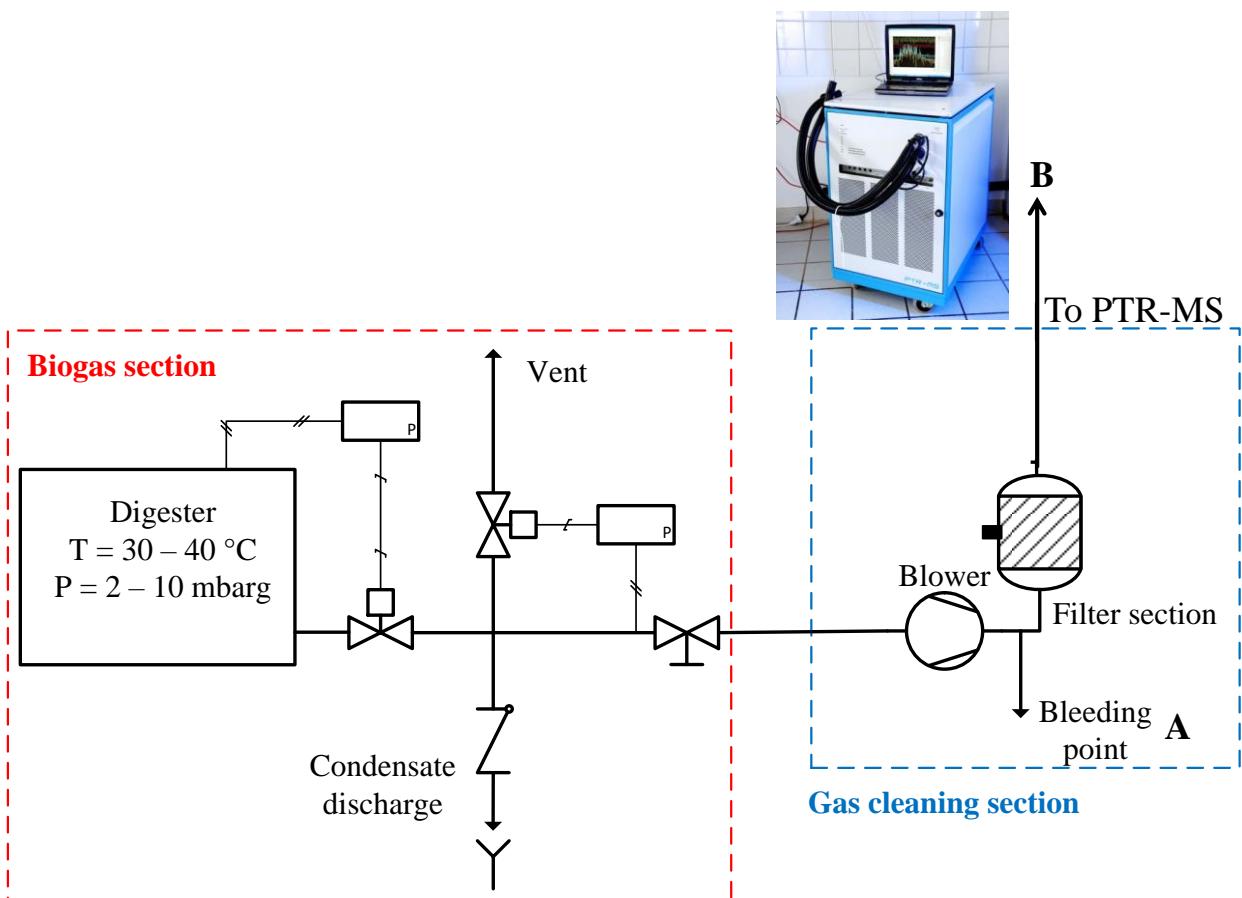
97 linked to the adsorption capacity of trace compounds as reported in literature (Shang et al., 2016).
98 To the best of our knowledge, this paper is the first attempt to monitor online the removal of biogas
99 trace compounds, using a recoverable waste as a sorbent material with PTR-MS instrument.

100 **2. Experimental and methods**

101 **2.1. Anaerobic digestion pilot plant**

102 The organic fraction of municipal solid waste was selected as substrate for biogas production. These
103 wastes were treated in a pilot plant placed at Foundation Edmund Mach - S. Michele a/A, Italy
104 (TN). Bio-wastes were pretreated in a cylindrical sieve to avoid undesired components, such as
105 stones, papers, plastics and glasses. The rectangular digester is made by concrete (16 m³) and it is
106 sealed with resin. Before the waste loading, OFMSW was mixed with chipped wood, at a volume
107 ratio of 0.6 – 0.7 to achieve suitable biomass porosity. To rapidly initiate the methane production,
108 the biomass was subjected to a four day preoxidation process. Consequently, the initial lag phase
109 was reduced. The temperature increased at 35 °C and a significant release of carbon dioxide and
110 other VOCs was recorded. After the aerobic phase, the digester was sealed for the transition from
111 aerobic to anaerobic condition. The biomass temperature was thermostatically controlled by fixed
112 floor, wall coils and by leachate sprinkling as needed. Under these conditions the anaerobic
113 digestion was accomplished in approximately 30 days. The biomass was subjected to a composting
114 treatment for 20 days before final use as fertilizer. Table 1 summarizes the composition and
115 physicochemical characteristics of the OFSMW batch used in this study.

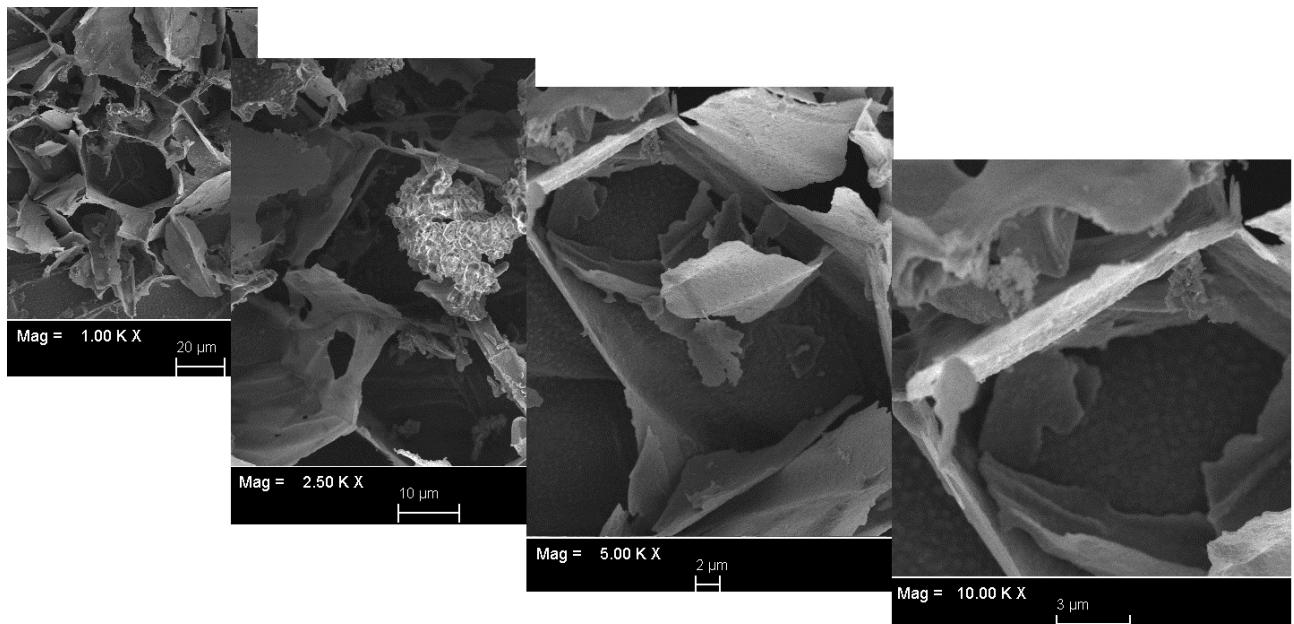
116 Table 1 – Composition and physicochemical characteristics of the OFSMW batch


	Volume (m ³)	Mass (t)	Water content (%)	Volatile Solids (%)	pH in	pH out
Digestate from previous batch	7.38 [±0.31]	6.75 [±0.51]	61.7 [±1.1]	55.8 [±3.1]	8.5 [±0.15]	
OFMSW + Wood	9.08 [±0.39]	5.34 [±0.45]	59.1 [±0.72]	83.2 [±3.0]	5.7 [±0.18]	

Mix	14.84 [± 0.45]	11.85 [± 0.48]	58.9 [± 1.05]	56.7 [± 3.2]	7.8 [± 0.19]	8.2 [± 0.2]
-----	----------------------	----------------------	---------------------	--------------------	--------------------	-------------------

117 Where:
118 • pH in: pH measured at the beginning of loading into the digester
119 • pH out: pH at end of digestion process
120 • Mix: total biomass loaded into the digester
121 • Square brackets indicate the standard deviation of measurements
122 * Mix was left at ambient temperature for 4 days prior to loading into the digester, thereby probably changing the pH
123 e.g. via CO₂ escaping into the atmosphere.

124 **2.2. Sorbent material characterization and experimental settings**


125 Biochar from the pyrolysis of wood was produced by Gruppo RM Impianti srl. (Italy), in a 200
126 kWe reactor at low temperature (150 °C). This sorbent sample was tested in a glass reactor filter of
127 340 ml. The experimental set-up is described in Figure 1. The blower coupled with the digester
128 flushes an average flow rate of 0.3 Nm³/h with a gas hourly space velocity (GHSV) of 882 h⁻¹, at
129 ambient temperature and pressure around 80 mbar. The value chosen for the GHSV parameter is
130 compatible with space velocities expected for 1 kWel SOFC micro-CHP application (Barelli et al.,
131 2015).

133

Figure 1 – Biogas to gas cleaning section – experimental set up for biochar testing

134 Adsorption isotherms for N₂ at 77 K were determined using a Quantachrome Autosorb 1 (Boynton
 135 Beach, Florida, USA). These measurements were able to characterize the sample in terms of
 136 specific surface area. Samples were outgassed at 423 K overnight prior to the adsorption
 137 measurements. The equipment allows measurement of relative pressure of 10⁻⁶ bar. Specific surface
 138 areas have been calculated by Langmuir model. Langmuir surface area resulted to be 75 m²/g
 139 (average value of 3 samples). This value, although lower than activated carbons (typically 1500
 140 m²/g), is significantly higher than ashes (~1 m²/g) (Davide Papurello et al., 2016d). The porosity
 141 was evaluated indirectly considering the mass of sample, the micro, meso and total pore volume of
 142 the filter. The porosity was about 4%. Figure 2 shows the FESEM images for the biochar sample.

143

Figure 2 – FESEM biochar characterization

144 Elemental composition measurements were performed by scanning electron microscopy (SEM)
 145 (FEI Inspect, Philips 525 M) coupled with EDS (SW9100 EDAX) analysis. The results are reported
 146 in the following table.

148

Table 2 – Elements identified with SEM-EDS analysis in the biochar sample

Element	Atomic % virgin	Atomic % tested
C	98.85	98.95
K	0.34	0.30
Ca	0.81	0.37
Mn	0	0
S	0	0.38
Total:	100.00	100.00

149 The most abundant element is carbon followed by calcium, potassium, manganese. Only for the
 150 tested sample also elemental sulfur is detected. The concentrations of K and Ca are important for
 151 the removal of sulfur compounds, as reported by Tepper and Richardson et al., (2002) (Richardson
 152 J., Bjorheden R., Hakkala P., Lowe AT., 2002; Tepper, n.d.). It was difficult to correlate the
 153 elements before and after the experimental test. A potassium and calcium decrease could be related
 154 to the reactions between metals and trace compounds, such as sulfur compounds.

155 **2.3. Online monitoring technique – PTR-MS**

156 Trace compounds were monitored using a PTR-QMS 500 instrument (Ionicon Analytik GmbH,
 157 Innsbruck, Austria) connected directly to the gas cleaning section (Figure 1). Biogas was sampled in
 158 two points: before the filter (point (A)) and after the filter (point (B)). All the lines were made in
 159 Teflon. This has been done to guarantee the trace compounds stability along the lines. Several
 160 studies have investigated the suitability of different materials for VOC gas sample storage
 161 (Beauchamp et al., 2008). Pet'ka et al., (2000) found that teflon and saran bags were two unsuitable
 162 material for storage applications due to high levels of contaminant compounds emanating from the
 163 bag materials (Pet'ka et al., 2000). Focusing on the teflon material it was reported a compound
 164 losses over time, function of the trace compound type (Pet'ka et al., 2000). Van Harreveld (2003)
 165 investigated nalophan bags and found that samples remained relatively stable between 4 and 12 h
 166 after sampling. Concentration decreases after 30 h of storage to about half of their initial levels:
 167 This was attributed to diffusion effects (van Harreveld, 2003). In our case, contrarily to the common
 168 literature studies, VOCs analysis was performed in real time (B). Here, the information losses
 169 related to the concentration diffusion are limited to the minimum. The concentration from point (A)
 170 was monitored once a day, for at least one hour, to find the breakthrough of clean gas. The clean

171 biogas, point (B) was monitored continuously 23 h per day. The concentrated sample (A) was
 172 diluted with nitrogen at a ratio of 1:10. This procedure is required to maintain the instrument
 173 linearity, between 300 pptv and 10 ppm(v). PTR-QMS 500 is able to detect compounds from 1 –
 174 300 amu, with a resolution close to 1 amu, a response time of 100 ms and a linearity range of 300
 175 ppt(v) – 10 ppm(v) (Ionicon datasheet). Detail investigation on the instrument settings was reported
 176 elsewhere (Boschetti et al., 1999; Papurello et al., 2015a). The sample was directly injected into the
 177 drift tube of the instrument via a heated PEEK line (110 °C). Table 3 lists a selection of the mass
 178 peaks which are the subject of this paper. Each compound is characterized by its nominal mass
 179 (m/z), protonated chemical formula, and tentative identification based on the previous studies.

180 Table 3 – Mass peaks which were used in this study along with their experimental and expected m/z values, their
 181 chemical formula and tentative identification supported also by available literature

Nominal m/z	Protonated chemical formula	Tentative identification	References for PTR-MS spectra	References for biogas from waste management
31	CH ₃ O ⁺	Formaldehyde	(Buhr et al., 2002)	(Font et al., 2011; Mata-Alvarez et al., 2000)
34	H ₃ S ⁺	Hydrogen sulfide	(Papurello et al., 2012; Singer et al., 2011)	(Font et al., 2011; Lomans et al., 2002; Mata-Alvarez et al., 2000)
41	C ₃ H ₅ ⁺	Alkylic fragment	(Knighton et al., 2012; Morozova et al., 2016)	(Papadias et al., 2012)
45	C ₂ H ₅ O ⁺	Acetaldehyde	(Buhr et al., 2002; Jordan et al., 2009)	(Font et al., 2011; Orzi et al., 2010; Scaglia et al., 2011; Wang and Wu, 2008)
47	CH ₃ O ₂ ⁺	Formic acid	(Jordan et al., 2009)	(Papadias et al., 2012)
49	CH ₅ S ⁺	Methanethiol	(Papurello et al., 2012)	(Font et al., 2011; Lomans et al., 2002; Orzi et al., 2010)
55	C ₄ H ₇ ⁺	Butadiene	(Knighton et al., 2012)	(Papadias et al., 2012)
59	C ₃ H ₇ O ⁺	Acetone	(Buhr et al., 2002)	(Font et al., 2011; Orzi et al., 2010; Scaglia et al., 2011)
61	C ₂ H ₅ O ₂ ⁺	Acetic acid	(Aprea et al., 2007; Buhr et al., 2002)	(Font et al., 2011; Orzi et al., 2010; Scaglia et al., 2011)
63	C ₂ H ₇ S ⁺	Dimethylsulfide (DMS)	(Biasioli et al., 2011)	(Font et al., 2011; Lomans et al., 2002)
67	C ₅ H ₇ ⁺	Cyclopentadiene	(Brilli et al., 2014)	(Demirbas, 2007)

69	$\text{C}_4\text{H}_5\text{O}^+$	Isoprene	(Biasioli et al., 2011)	(Font et al., 2011)
71	$\text{C}_5\text{H}_{11}^+$	Cyclopentane	(Yuan et al., 2013)	(Papurello et al., 2012)
73	$\text{C}_3\text{H}_5\text{O}_2^+$	Acrylic acid	(Brilli et al., 2014)	(Demirbas, 2007)
75	$\text{C}_3\text{H}_7\text{O}_2^+$	Propionic acid/propanoates	(Aprea et al., 2007; Buhr et al., 2002)	(Font et al., 2011; Orzi et al., 2010; Scaglia et al., 2011)
77	$\text{C}_3\text{H}_9\text{S}^+$	Propanethiol	(Papurello et al., 2012)	(Vairavamurthy and Mopper, 1987)
79	C_6H_7^+	Benzene	(Biasioli et al., 2011)	(Font et al., 2011; Orzi et al., 2010; Scaglia et al., 2011)
81	C_6H_9^+	Cyclohexadiene		(Papadias et al., 2012)
83	$\text{C}_5\text{H}_7\text{O}^+$	Cyclopentenone		(Demirbas, 2007)
87	$\text{C}_5\text{H}_{11}\text{O}^+$	2-Pentanone/Pentanal	(Buhr et al., 2002)	(Font et al., 2011; Orzi et al., 2010; Scaglia et al., 2011)
89	$\text{C}_4\text{H}_9\text{O}_2^+$	Butyric acid/butyrate	(Aprea et al., 2007; Buhr et al., 2002)	(Font et al., 2011)
91	$\text{C}_4\text{H}_{11}\text{S}^+$	Butanethiol	(Papurello et al., 2012)	(Vairavamurthy and Mopper, 1987)
93	C_7H_9^+	Toluene	(Biasioli et al., 2011; Jordan et al., 2009)	(Font et al., 2011; Staley et al., 2006)
101	$\text{C}_6\text{H}_{13}\text{O}^+$	2-Hexanone/hexanal	(Buhr et al., 2002)	(Scaglia et al., 2011)
105	C_8H_9^+	Styrene	(Biasioli et al., 2011)	(Font et al., 2011; Orzi et al., 2010; Scaglia et al., 2011)
107	$\text{C}_8\text{H}_{11}^+$	Xylene	(Biasioli et al., 2011)	(Font et al., 2011; Orzi et al., 2010; Scaglia et al., 2011)
109	$\text{C}_7\text{H}_9\text{O}^+$	Benzyl alcohol	(Brilli et al., 2014)	(Demirbas, 2007)
115	$\text{C}_7\text{H}_{15}\text{O}^+$	2-Heptanone/heptanal	(Buhr et al., 2002)	(Scaglia et al., 2011)
119	$\text{C}_9\text{H}_{11}^+$	Methylstyrene	(Yuan et al., 2013)	(Demirbas, 2007)
121	$\text{C}_9\text{H}_{13}^+$	Cumene	(Jordan et al., 2009)	(Mata-Alvarez et al., 2000; Scaglia et al., 2011)
135	$\text{C}_{10}\text{H}_{15}^+$	p-Cymene	(Biasioli et al., 2011)	(Font et al., 2011; Mata-Alvarez et al., 2000; Orzi et al., 2010; Scaglia et al., 2011)
137	$\text{C}_{10}\text{H}_{17}^+$	Monoterpenes	(Biasioli et al., 2011)	(Font et al., 2011; Mata-Alvarez et al., 2000; Orzi et al., 2010; Scaglia et al., 2011)
143	$\text{C}_9\text{H}_{19}\text{O}^+$	2-Nonanone/nonanal	(Buhr et al., 2002)	(Mata-Alvarez et al., 2000; Scaglia et al., 2011)
205	$\text{C}_{15}\text{H}_{25}^+$	Sesquiterpenes	(Biasioli et al., 2011; Jordan et al., 2009)	(Demirbas, 2007; Mata-Alvarez et al., 2000)

223	$C_6H_{18}O_3Si_3H^+$	D3, hexamethylcyclotrisiloxane	(Singer et al., 2011)	(Papadias et al., 2012)
-----	-----------------------	-----------------------------------	--------------------------	-------------------------

182

3. Results

183

3.1. Biogas composition of trace compounds

184

Commonly, the biogas composition of trace compounds was monitored using a bag collection system, as reported from literature (Davide Papurello et al., 2016d, 2014a, 2014b, Papurello et al., 2015b, 2015c, 2013, 2012). The discontinuous monitoring system shows some lacks due to the instability of some compounds. This instability was studied and results suggest to improve the collecting system, as reported elsewhere (Arnold, 2009; Beghi and Guillot, 2008). To the best of our knowledge this research was the first attempt to build a direct connection from the biogas anaerobic digester, to the monitoring system. Rapid and reliable results were achieved in real time, as demonstrated from the comparison between the monitored and tentative identification compounds reported in literature (Table 3). The effectiveness of an OFMSW anaerobic digestion process for large-scale application depends to a great extent on the quantity and quality of the produced biogas. In all the experimental tests, the initial lag phase in which carbon dioxide production predominated, was reduced using aerobic and alkaline pre-treatments. The anaerobic digestion process lasted about three weeks after the first stage of loading. For the first week, the process produced mainly carbon dioxide (max 70% and average flow rate 3 m³/h) with a low fraction of methane (min 5-6% and average flow rate 0.01 m³/h), as reported in our previous studies (Papurello et al., 2015a, 2012). The amount of CO₂-rich biogas produced in the first phase is not useful for the energy purposes. After this period of time, the methane production phase starts and it lasted for the remaining two weeks with a concentration of CH₄ around 60/65 %vol. with an average flow rate value around 0.5 m³/h. Trace compounds monitored along the digestion process are collected in Table 4. These data are an average value of the trace compounds monitored. Standard deviations of these data are also reported. The spread of experimental points is short. The variability of these points range from +/- 11%.

206 It is possible to group the trace compounds into the following families: terpene, siloxane,
207 hydrocarbon, sulfur, carbonyl, carboxyl and aromatic compounds. Taking in consideration the
208 average value, the biogas composition can be divided as follows: siloxanes 1%, sulfur compounds
209 6%, higher hydrocarbons 9%, terpenes 13%, carbonyl-carboxyl and aromatic compounds 35% and
210 37%, respectively.

211 Siloxanes can be found in a non-perfect separate collection because they are included in many
212 industrial processes and consumer products (Arnold, 2009), such as soaps and cosmetics. Siloxanes
213 were tentatively identified in Papurello et al., (2016) in a biogas produced from dry anaerobic
214 digestion of OFMWS (Davide Papurello et al., 2016d). They come from silicon released from the
215 mass treated inside the digester (Rasi et al., 2011). The release of organosilicon compounds from
216 the biomass to the biogas, in general, is dependent on the T, p and digestion process. At present,
217 there is no standard method for the analysis of volatile siloxanes in a gaseous mixture. In this batch
218 the only siloxanes detected is D3 (m/z 223).

219 Sulfur compounds, mainly H₂S is dependent on the aerobic to anaerobic transition phase (Papurello
220 et al., 2012). As reported elsewhere, H₂S represents the main sulfur compound (Orzi et al., 2010;
221 Papurello et al., 2012; Scaglia et al., 2011). H₂S represents 76% of the total sulfur compounds
222 detected. The remaining contribution derives from butanethiol (m/z 91) (21%), dimethylsulfide
223 (m/z 63) (2%) and metanethiol (m/z 49) (1%). These thiols are mainly produced at the end of the
224 digestion process. As reported in other testing campaigns the production of sulfur compounds occur
225 mainly at the beginning and at the end of the digestion process (Davide Papurello et al., 2014a;
226 Papurello et al., 2015a, 2012).

227 Terpenes originate from the inherited organic matter, fruits and vegetables contained in the
228 OFMSW and they are released into the gas matrix. Terpenes have been reported to be stripped
229 during the first stage of aerobic process (Pierucci et al., 2005). The main terpene compound
230 detected is p-cymene (m/z 135) with 48%, followed by limonene (m/z 137) with 41%. The

231 remaining contribution derives from sesquiterpene (m/z 205) (6%) and isoprene (m/z 69) (5%). The
232 high levels of p-cymene in the biogas suggests the occurrence of d-limonene transformation by the
233 anaerobic bacteria, as reported by (Orzi et al., 2010).

234 Aromatic compounds can be detected in organic material decomposition. In fact, Eitzer (1995),
235 reported during unsorted MSW-composting, the high presence of terpenes, but also the high
236 presence of aromatic hydrocarbons (Eitzer, 1995). In another study, Komilis et al., (2004) indicated
237 that aromatic hydrocarbons were emitted even if only food waste were composted (Komilis et al.,
238 2004). In Orzi et al., (2010) the aromatic hydrocarbons detected were mainly, toluene and various
239 alky-benzene that probably suggested a non-biogenic origin (Orzi et al., 2010). In the present study
240 aromatic hydrocarbons detected are toluene (m/z 93) (80%), cyclohexadiene (m/z 81) (14%)
241 followed by cyclopentane (m/z 71) and propyne (m/z 41).

242 Carbonyl and carboxyl compounds can be detected in the biogas due to the decomposition of
243 OFMSW. Two different mechanistic approaches could be adopted in order to explain the release of
244 carbonyl compounds: (a) direct oxidation of alcohols in the presence of oxygen – formation of 2-
245 ketones during the acetogenesis and (b) formation of 2-ketones through methanogens induced
246 oxidative reactions under alkaline conditions (Papurello et al., 2012; Scaglia et al., 2011).
247 Generally, the carbonyl compound levels remain remarkably high throughout the dry anaerobic
248 digestion, which is in accordance with the findings of Orzi et al. (2010) (Orzi et al., 2010). Formic
249 (m/z 47.012), acetic (m/z 61.027), propionic (m/z 75.044), and butyric (m/z 89.059) acid are
250 detected along the anaerobic digestion process. The emissions of carboxylic acids are strongly
251 dependent on pH. The initial pH at the beginning of the digestion is neutral to basic, and the final
252 pH at the end of digestion is alkaline. This is confirmed by the increase of CO₂ production.
253 Carboxylic acids formation is generally related to the inherited organic matter. In fact, derives from
254 the lipids breakdown and also from acidogenic bacteria action on the carbohydrate substrate derived
255 from the hydrolysis of starch and cellulosic biopolymers.

Table 4 – Biogas trace compounds composition from dry Anaerobic Digestion process of organic waste from local municipality. (ppb(v))

Time (h)	31 CH ₂ O		34 H ₂ S		41 C ₃ H ₄		45 C ₂ H ₄ O		47 C ₂ H ₆ O		49 CH ₄ S		55 C ₄ H ₆	
	formaldehyde	std.dev.	hydrogen sulfide	std.dev.	propyne	std.dev.	acetaldehyde	std.dev.	formic acid	std.dev.	methanethiol	std.dev.	butadiene	std.dev.
129	1376	5.2	23425	925.6	522	40.7	141	16.8	53	16.8	21	0.9	201	30.7
159	1379	3.6	22966	876.4	530	49.9	163	13.3	48	13.3	23	1.4	209	4.7
161	1085	12.5	26430	948.9	564	46.2	154	14.3	64	14.3	19	1.7	225	17.2
175	1412	3.9	23511	1058.1	540	72.4	158	23.1	64	23.1	26	2.8	228	23.6
183	1274	7.2	27353	1752.1	567	56.1	172	5.8	61	5.8	21	2.4	201	26.5
199	1256	8.8	21393	969.9	504	70.4	137	6.2	54	6.2	24	2.9	214	18.4
206	1522	14.3	26353	1342.0	503	37.6	186	13.5	69	13.5	32	1.5	294	9.2
222	101	12.4	2892	187.8	956	67.0	711	76.6	193	76.6	2	0.2	698	54.3
230	1143	15.0	30571	1123.7	566	51.7	170	13.7	61	13.7	17	0.8	207	15.2
246	1344	13.4	25222	1134.7	435	40.9	150	8.3	61	8.3	23	2.5	226	5.5
269	1269	8.9	26928	995.8	493	13.9	164	19.4	64	19.4	22	1.5	233	28.9
293	1393	13.7	24845	1188.4	467	55.7	148	18.1	61	18.1	24	2.4	246	19.2
301	1144	9.2	26151	1114.5	507	31.6	156	18.5	60	18.5	19	1.8	219	27.6
313	1292	12.9	25741	1443.3	462	38.3	154	10.8	55	10.8	21	2.2	216	29.2
325	939	12.3	27913	829.8	534	28.1	171	26.6	61	26.6	15	1.2	219	8.1
Min (ppm(v))	0.1		2.9		0.4		0.1		0		0		0.2	
Max (ppm(v))	1.5		30.6		1		0.7		0.2		0.03		0.7	

Time (h)	59 C ₃ H ₆ O		61 CH ₃ COOH		63 C ₂ H ₆ S		67 C ₅ H ₆		69 C ₅ H ₈		71 C ₅ H ₁₀		73 C ₄ H ₈ O	
	acetone	std.dev.	acetic acid	std.dev.	dimethylsulfide	std.dev.	ciclobutadiene	std.dev.	isoprene	std.dev.	cyclopentane	std.dev.	2-butane	std.dev.
129	2529	201.0	55	7.0	84	8.9	99	4.8	535	38.0	515	52.8	12310	1422.8
159	2339	283.6	58	6.0	74	7.1	86	8.8	415	21.8	440	46.6	10633	1137.1

161	2286	197.5	29	2.1	70	5.6	136	13.2	606	58.3	454	64.7	16761	2172.2
175	2658	340.4	82	6.9	85	12.9	93	11.0	480	41.1	557	26.8	11081	1189.9
183	2550	267.0	41	4.0	62	7.1	99	9.4	496	50.1	445	36.5	16559	1367.9
199	2335	259.2	53	5.8	89	9.1	81	3.0	431	25.4	495	22.9	12189	1052.4
206	2671	249.9	69	8.4	95	7.7	78	6.8	404	45.4	477	39.5	12215	961.3
222	1765	130.7	230	27.6	3	0.3	27	2.5	69	6.4	98	13.7	5889	762.4
230	2098	211.0	35	4.4	55	5.6	116	14.8	500	54.6	404	46.0	11629	1157.9
246	2096	173.4	60	5.8	73	4.5	72	6.9	352	35.6	372	11.3	8889	687.2
269	2474	287.6	46	4.6	67	2.8	84	7.7	427	44.9	391	38.2	15721	1103.5
293	2346	162.4	53	5.8	84	8.4	71	6.8	353	26.0	409	45.1	12478	702.0
301	2447	249.6	34	1.0	61	4.0	96	7.4	509	47.4	397	24.1	19059	1025.6
313	3035	190.4	187	24.6	68	6.7	77	9.1	270	22.4	481	44.4	12786	1261.3
325	2231	150.9	23	0.6	57	4.2	100	13.8	200	27.7	401	35.2	20817	2051.5
Min (ppm(v))	1.8	0	0	0	0	0	0.1	0	0	0	0	0	6	
Max (ppm(v))	3	0.2	0.1	0.1	0.1	0.6	0.6	1	1	1	1	21		

258

Time (h)	75 C ₃ H ₆ O ₂		77 C ₃ H ₈ S		79 C ₆ H ₆		81 C ₆ H ₈		83 C ₅ H ₆ O		87 C ₅ H ₁₀ O		89 C ₄ H ₈ O ₂	
	propionic acid	std.dev.	propanethiol	std.dev.	benzene	std.dev.	cyclohexadiene	std.dev.	methylfuran	std.dev.	2pentanone	std.dev.	butyric acid	std.dev.
129	51	6.3	9	0.7	22	1.7	3767	251.3	1414	115.2	524	32.7	9	0.8
159	43	3.9	8	0.8	22	1.1	3346	233.3	1181	127.7	415	44.4	8	0.4
161	66	1.3	12	0.4	24	2.9	5534	430.8	1764	61.6	587	42.4	9	0.7
175	51	2.2	7	0.6	7	0.7	3743	571.6	1242	137.3	458	51.5	14	1.9
183	65	6.0	7	0.7	7	0.7	4251	288.5	1464	78.4	659	66.3	11	1.5
199	50	3.0	8	0.2	8	1.0	3587	435.2	1289	99.3	490	19.5	8	1.1
206	52	4.9	23	1.6	22	1.5	3475	335.6	1382	123.0	519	54.9	11	1.2
222	36	5.6	25	3.3	16	1.1	591	70.3	136	7.8	121	17.0	10	0.9
230	49	3.1	6	0.1	6	0.2	4676	175.7	1457	107.7	258	10.4	4	0.5

246	40	3.0	5	0.8	5	0.5	2857	192.2	1031	92.1	192	17.4	4	0.5
269	64	2.4	6	0.5	6	0.5	3320	317.7	1166	55.2	256	9.4	3	0.3
293	40	4.2	4	0.4	4	0.3	2937	272.3	1115	90.7	191	16.5	2	0.3
301	75	1.4	5	0.4	5	0.5	4151	191.2	1489	84.8	250	27.0	3	0.4
313	45	5.9	4	0.5	4	0.4	2898	211.1	932	66.9	205	18.3	2	0.3
325	50	3.2	5	0.6	5	0.5	5296	271.9	1811	116.3	385	41.2	3	0.2
Min (ppm(v))	0		0		0		1		0		0		0	
Max (ppm(v))	0		0		0		6		2		1		0	

259

Time (h)	91 C ₄ H ₁₀ S		93 C ₇ H ₈		101 C ₆ H ₁₂ O		105 C ₈ H ₈		107 C ₈ H ₁₀		109 C ₇ H ₈ O		115 C ₇ H ₁₄ O	
	butanethiol	std.dev.	toluene	std.dev.	2- hexanone	std.dev.	styrene	std.dev.	xylene	std.dev.	benzilic acid	std.dev.	2-heptanone	std.dev.
129	523	58.8	17745	1193.3	145	12.4	47	4.5	36	4.6	69	6.7	88	8.5
159	506	55.3	17497	1293.6	115	13.3	36	4.2	32	3.5	65	2.2	74	5.6
161	1046	47.9	30423	3533.0	140	21.5	163	9.5	50	6.4	85	3.6	132	11.6
175	548	34.3	18741	431.0	137	16.0	42	5.2	36	3.1	69	3.3	79	6.2
183	867	41.9	27046	3425.5	160	19.1	75	5.6	37	2.3	65	2.4	103	10.7
199	500	55.2	17481	874.4	127	13.9	32	1.4	28	3.2	51	4.8	71	7.7
206	545	47.9	18819	1832.6	139	17.0	29	2.4	30	4.1	62	6.7	76	9.9
222	486	50.6	11019	590.8	49	2.9	14	1.1	15	2.0	47	4.4	31	1.7
230	1150	110.3	31000	3109.0	123	2.7	134	13.2	46	5.9	77	7.9	105	10.1
246	381	35.6	13852	1809.2	116	13.2	21	3.1	29	1.9	64	2.1	62	5.4
269	599	61.9	18511	1897.3	161	24.7	41	2.2	31	2.3	58	4.6	78	8.7
293	423	45.9	15002	1558.8	128	13.9	24	1.9	26	1.3	52	4.5	66	3.6
301	839	64.5	26972	2305.7	166	17.5	80	11.8	33	1.4	60	6.4	112	16.8
313	555	52.4	17875	936.8	164	15.9	34	1.5	33	1.6	93	5.0	98	9.9
325	1083	123.7	30433	2431.1	200	22.8	152	5.2	47	3.8	75	6.2	158	23.7
Min (ppm(v))	0		11		0		0		0		0		0	

Max (ppm(v))	1	31	0.2	0.2	0	0.1	0.2
-----------------	---	----	-----	-----	---	-----	-----

260

Time (h)	119 C ₉ H ₁₀		121 C ₉ H ₁₂		135 C ₁₀ H ₁₄		137 C ₁₀ H ₁₆		143 C ₉ H ₁₈ O		205 C ₁₅ H ₂₄		223 C ₆ H ₁₈ O ₃ Si3	
	methylstyrene	std.dev.	cumen	std.dev.	p-cymene	std.dev.	limonen	std.dev.	2-nonanon	std.dev.	sesquiterpene	std.dev.	hexamethylcyclotrisiloxane	std.dev.
129	123	14.4	25	1.0	4114	221.3	3586	218.9	33	3.8	535	48.2	535	53.5
159	103	12.6	21	1.5	3682	331.6	3170	440.4	29	2.5	421	57.6	421	43.8
161	324	48.1	47	4.1	4889	153.6	4880	271.0	39	3.8	597	64.0	597	19.2
175	109	10.5	23	3.5	3864	302.9	3367	351.8	33	3.5	490	18.1	490	25.7
183	168	18.4	26	1.3	4345	264.1	3437	342.6	29	1.8	496	20.0	496	70.2
199	83	3.5	18	2.5	3725	510.4	3066	156.6	23	3.0	437	27.7	437	28.5
206	74	4.7	17	2.1	3409	330.4	2729	313.4	29	2.6	412	25.4	412	46.9
222	246	27.4	10	1.2	1091	112.1	372	15.5	14	1.4	69	8.7	69	1.4
230	255	22.0	35	2.1	4229	349.1	3524	270.1	30	3.7	500	49.1	500	61.5
246	61	3.0	15	1.5	2585	232.9	2412	267.6	24	3.5	358	34.3	358	32.6
269	99	6.4	18	1.9	3203	311.5	2574	281.1	25	2.3	427	25.9	427	32.2
293	63	6.0	14	1.4	3041	195.8	2405	280.8	23	2.8	360	22.9	360	23.4
301	173	8.3	26	1.7	3793	187.0	3087	344.4	25	1.5	509	18.4	509	29.5
313	90	8.1	18	1.5	2886	178.7	2385	263.0	50	7.1	380	11.8	150	3.9
325	265	36.0	40	4.3	3508	319.2	3913	156.4	33	3.1	360	43.6	150	18.0
Min (ppm(v))	0.1		0		1.1		0.4		0		0.1		0.1	
Max (ppm(v))	0.3		0		4.9		4.9		0		0.6		0.6	

261

262

263 **3.2. Adsorption capacity evaluation**

264 The adsorption capacity is inversely correlated to the breakthrough capacity for a given sorbent
265 material. The adsorption capacity estimation is often the major determinant of service life time for
266 an adsorbent. The adsorption capacity was evaluated considering the following equation, (Sisani et
267 al., 2014):

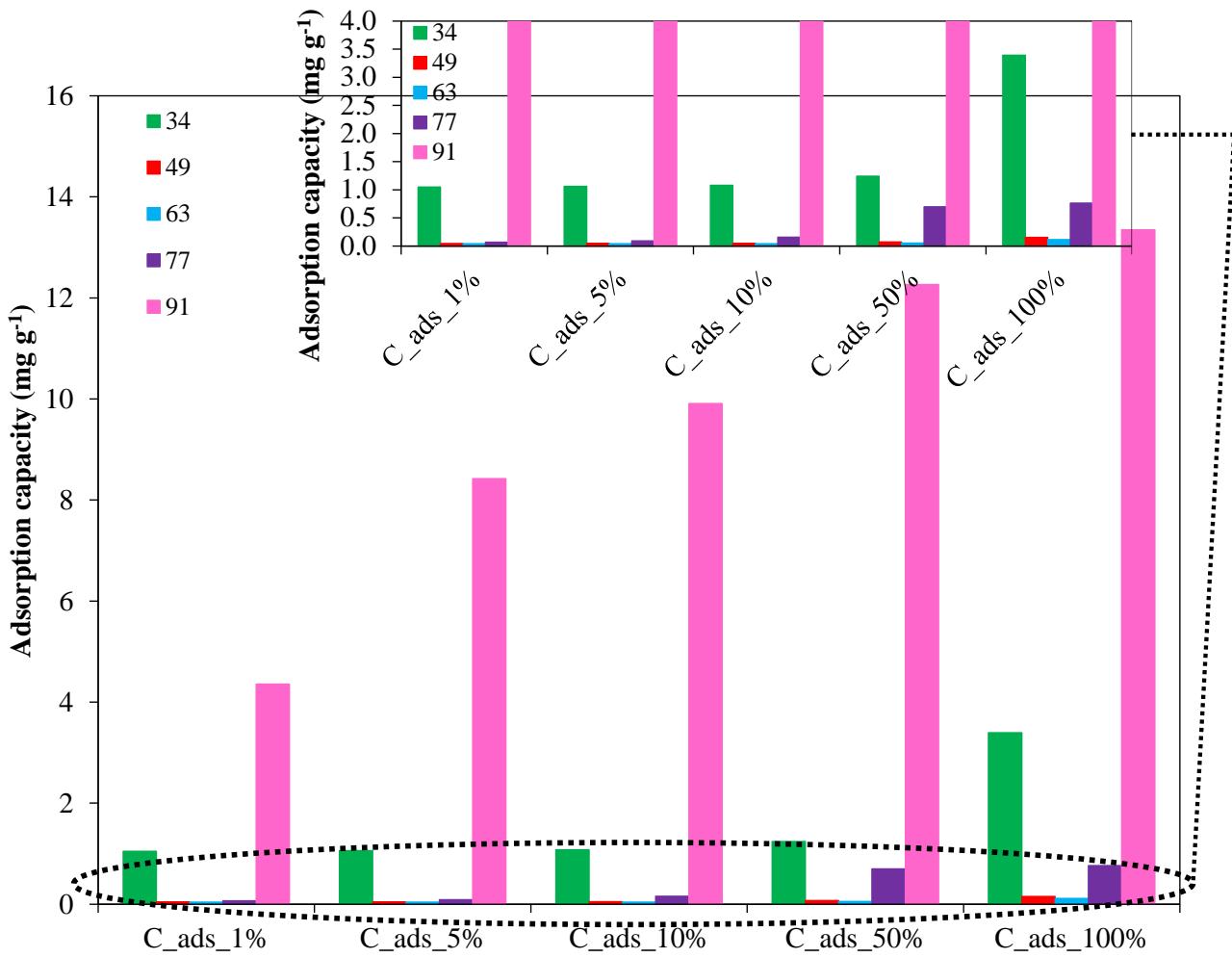
$$268 \quad C_{ads} = \frac{\dot{Q} \cdot MW \cdot (C_{in} \cdot t_1 - (t_1 - t_0) \cdot 0.5)}{Vm \cdot m \cdot 10^3} \quad (1)$$

269 Where:

270 Q, total gas flow rate (Nl/h);

271 MW, molecular weight (H₂S 34 g/mol);

272 C_{in}, inlet H₂S concentration (ppm(v));


273 t₁, breakthrough time when the outlet H₂S concentration is 1 ppm(v) (h);

274 t₀, breakthrough time at the last detection of 0 ppm(v) (h);

275 Vm, molar volume (24.414 Nl/mol);

276 m, mass of adsorbent material (g).

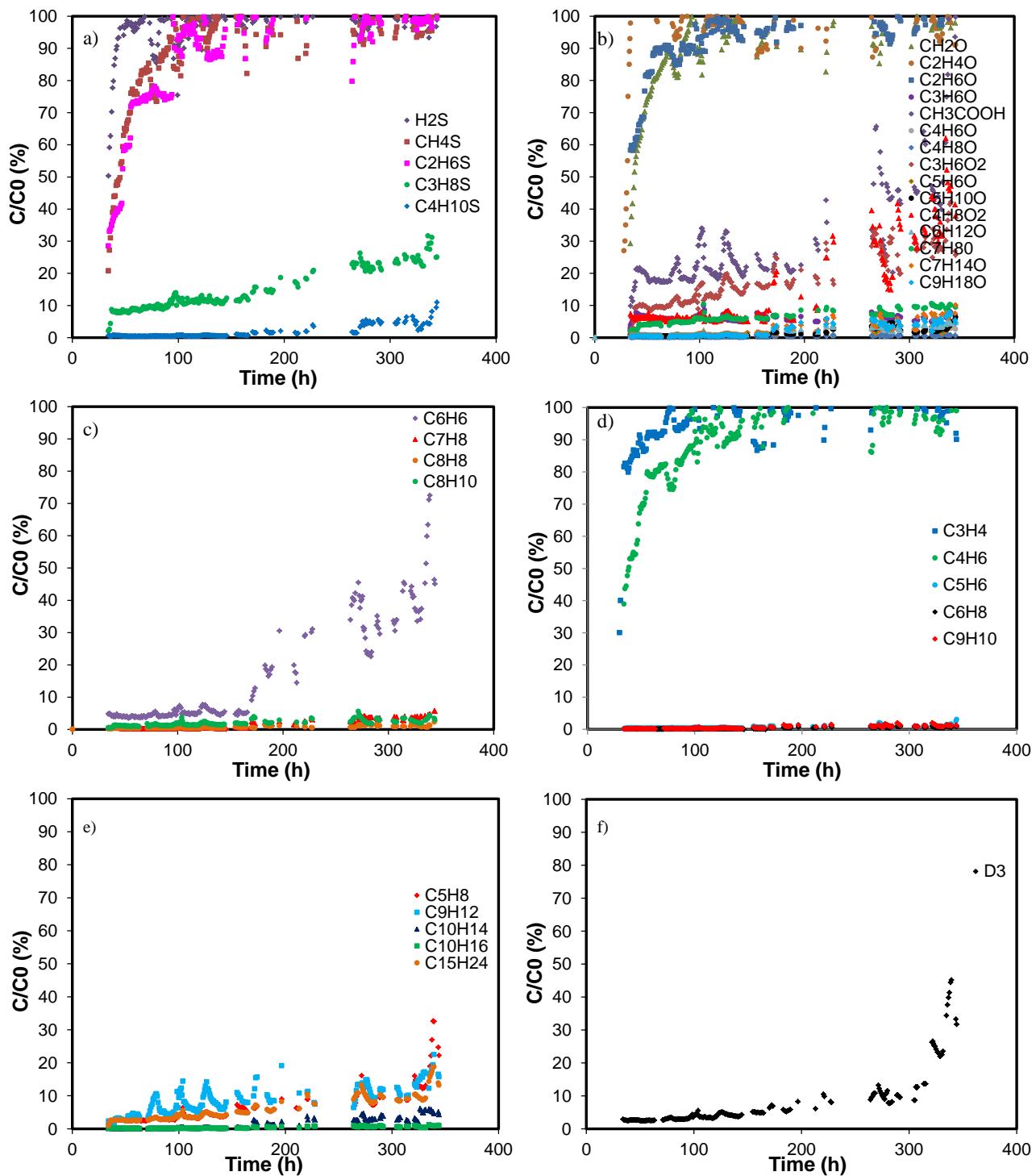
277

279 Figure 3 – Adsorption capacity for sulfur compounds

280 The adsorption capacity for sulfur compounds evaluated with equation 1, is reported in Table 5 and
 281 in Figure 3. It is crucial the initial breakthrough time for the SOFC feeding system and to plan a
 282 maintenance operation process for the sorbent replacement. In fact, as reported in literature, the
 283 tolerable levels of trace compounds contained in the biogas fuel are low (Hagen et al., 2011; D.
 284 Papurello et al., 2014; Davide Papurello et al., 2014a; Sasaki et al., 2011). The adsorption capacity
 285 achieved to remove H₂S was about 1.05 mg/g when it was achieved 1% of the starting H₂S
 286 concentration (limit fixed for the initial breakthrough value for SOFC requirements). This
 287 adsorption capacity value increased to 3.39 mg/g when the saturation of filter is reached. As
 288 reported in Papurello et al., (2016) simulated biogas with only H₂S, using two different commercial
 289 activated carbons showed an adsorption capacity that ranged from 3 – 6 mg/g. In this study biochar

290 was selected as sorbent material in a real biogas pilot plant. Results achieved are comparable with
291 literature results for H₂S removal. The second sulfur compound in terms of abundance was
292 butanethiol. Biochar showed an adsorption capacity value, at the initial breakthrough around 4.4
293 mg/g up to achieve 13.3 mg/g at the saturation of the filter. Considering the other sulfur
294 compounds, due to their lower concentration showed an adsorption capacity relatively low. Values
295 achieved ranged from 0.04 mg/g to 0.76 mg/g, from initial breakthrough to saturation. As reported
296 elsewhere, (D. Papurello et al., 2016) when the pollutant concentration increases also the adsorption
297 capacity increases. This is due to the driving force increasing; up to achieve a limit value above
298 which the adsorption capacity remains constant. The effectiveness of the adsorption treatment is
299 determined also by the type of substance to be removed. Substances with a high molecular weight
300 and low water solubility are better adsorbed with active carbon. In fact, H₂S showed a lower
301 adsorption capacity than butanethiol even with higher concentration values.

302 Commercial activated carbons, properly prepared for siloxanes removal have an adsorption capacity
303 that ranged around 100-200 mg/g in the single removal test (laboratory conditions). Biochar showed
304 an adsorption capacity of 1.28 mg/g at 1% of the starting D3 concentration, limit for the initial
305 breakthrough value. This adsorption capacity increased up to achieve, at 50% of the initial
306 concentration, 12.28 mg/g and at the saturation of the filter, remains quite stable with 13.15 mg/g.


307 The adsorption capacity for the removal of terpenes is reported in Table 5 and in Figure 4. The most
308 abundant terpene compound was p-cymene, followed by limonene. For these compounds the
309 adsorption capacity started from 35 mg/g and 64 mg/g, respectively. The trend for p-cymene
310 showed a significant increase from 1% to 5% of initial concentration of more than 50% up to
311 achieve, at the saturation condition 97.6 mg/g. The adsorption capacity increased significantly up to
312 102 mg/g at saturation conditions for limonene. Cumene and isoprene showed a lower adsorption
313 capacity due to pollutant concentration contained in the biogas.

314 Among aromatic compounds: benzene, toluene, styrene and xylene were detected. The most
315 abundant aromatic compound is toluene with an average value around 21 ppm(v), while benzene,
316 styrene and xylene showed a concentration below 10 ppb(v). The adsorption capacity of toluene, at
317 the starting condition showed a value above 140 mg/g up to achieve, rapidly the maximum capacity
318 at the saturation conditions (40% by weight of the carbon), see Figure 4 and Table 5.

319 The most common CHO compound detected in the biogas mixture was 2-butanone and the
320 adsorption capacity calculated ranged from 160 mg/g to 270 mg/g from initial to saturation
321 condition. Acetone and methylfuran show lower adsorption capacity values. The remaining
322 aromatic compounds, due to their lower concentration showed an adsorption capacity value below
323 the unity of mg/g.

Table 5 – Adsorption capacity from the initial breakthrough (1%) to saturation (100%) level

Cads (mg/g)	31	34	41	45	47	49	55	59	61	63	67
	CH ₂ O formaldehyde	H ₂ S hydrogen sulfide	C ₃ H ₄ propyne	C ₂ H ₄ O acetaldehyde	C ₂ H ₆ O ethanol	CH ₄ S methanethiol	C ₄ H ₆ butadiene	C ₃ H ₆ O acetone	CH ₃ COOH acetic acid	C ₂ H ₆ S dimethylsulfide	C ₅ H ₆ ciclobutadiene
1%	0.24	1.05	0.24	0.09	0.01	0.05	0.08	0.85	0.04	0.04	0.51
5%	0.26	1.06	0.24	0.10	0.01	0.05	0.09	2.29	0.04	0.04	0.71
10%	0.29	1.08	0.25	0.10	0.01	0.05	0.10	22.65	0.05	0.04	0.74
50%	0.57	1.24	0.30	0.11	0.02	0.07	0.20	26.40	0.20	0.05	0.82
100%	1.46	3.39	0.83	0.13	0.06	0.15	1.10	28.24	0.22	0.11	0.87
Cads (mg/g)	69	71	73	75	77	79	81	83	87	89	91
	C ₅ H ₈ isoprene	C ₄ H ₆ O crotonaldehyde	C ₄ H ₈ O 2-butanone	C ₃ H ₆ O ₂ propionic acid	C ₃ H ₈ S propanethiol	C ₆ H ₆ benzene	C ₆ H ₈ cyclohexadiene	C ₅ H ₆ O methylfuran	C ₅ H ₁₀ O 2-pentanone	C ₄ H ₈ O ₂ butyric acid	C ₄ H ₁₀ S butanethiol
1%	0.44	2.36	158.84	0.02	0.07	0.12	31.93	7.18	2.35	0.05	4.36
5%	1.69	4.67	191.31	0.02	0.09	0.15	57.14	16.71	4.78	0.09	8.42
10%	3.38	5.01	206.13	0.02	0.16	0.35	61.20	17.89	5.11	0.37	9.91
50%	4.05	5.91	248.84	0.05	0.70	0.66	73.01	20.82	5.90	0.72	12.27
100%	4.32	6.39	272.01	0.05	0.76	0.71	79.46	22.37	6.32	0.81	13.35
Cads (mg/g)	101	105	107	109	115	119	121	135	137	143	205
	C ₆ H ₁₂ O	C ₈ H ₈	C ₈ H ₁₀	C ₇ H ₈ O	C ₇ H ₁₄ O	C ₉ H ₁₀	C ₉ H ₁₂	C ₁₀ H ₁₄	C ₁₀ H ₁₆	C ₉ H ₁₈ O	C ₁₅ H ₂₄
Cads (mg/g)	2-hexanone	styrene	xylene	benzilic acid	2-heptanone	methylstyrene	cumene	p-cymene	limonene	2-nonanone	sesquiterpene
											hexamethylcyclotrisiloxane
1%	0.77	0.65	0.13	0.06	0.59	1.67	0.19	34.92	64.05	0.92	1.26
5%	1.67	0.76	0.29	0.11	0.95	2.75	0.26	72.75	74.41	1.52	5.45
10%	1.79	0.77	0.30	0.32	1.03	2.91	0.57	77.17	79.31	1.61	11.08
50%	2.08	0.83	0.33	0.44	1.15	3.36	1.16	90.66	93.69	1.79	13.65
100%	2.22	0.86	0.35	0.48	1.21	3.60	1.25	97.58	101.59	1.89	14.62
											13.15

326

327 Figure 4 – Removal performance for trace compounds: a) sulfur compounds, b) carbonyl and carboxyl compounds, c)
 328 aromatic compounds, d) hydrocarbon compounds, e) terpenes, f) siloxanes

329 **4. Discussion**

330 The contemporary presence of trace compounds in the fuel mixture for SOFC applications were
 331 monitored online with a DIMS technique. The main compounds monitored were the protonated

332 form of H₂S, C₇H₈, C₄H₈O, C₁₀H₁₆ and C₁₀H₁₄. These compounds belong to the family of sulfur,
333 aromatic, carbonyl and terpene compounds.

334 Hydrogen sulfide was the main sulfur compound detected. The average concentration was about 24
335 ppm(v). The tested sorbent material was able to withstand the H₂S concentration for almost 30 h
336 with the biogas pilot plant conditions before achieving the limit value for SOFC applications, 1
337 ppm(v) (Davide Papurello et al., 2014a). This concentration is the tolerable limit for SOFC
338 applications able to guarantee a reversible behavior rather than a dramatic and irreversible loss of
339 performance (Davide Papurello et al., 2016a). Considering the other detected sulfur compounds and
340 due to their lower concentration inside the biogas matrix, H₂S is the compound that fixes the
341 replacement time for the filter. The other important trace compounds that strongly affect the SOFC
342 performance are siloxanes. The average concentration detected for D3 was about 3.9 ppm(v). As
343 reported elsewhere, this concentration irreversibly affects the SOFC performance in few hours
344 (Madi et al., 2015; Davide Papurello et al., 2016a). The limit for D3 for SOFC applications is 1% of
345 the average concentration detected in the real biogas pilot plant. The time required to achieve this
346 limit is around 30 h, which confirms the time limit set by H₂S.

347 Table 6 – Time required to achieve the adsorption capacity percentage

		Compounds	Time (h)				
			1%	5%	10%	50%	100%
31	CH ₂ O	formaldehyde	14.6	16.0	17.8	36.2	93.1
34	H ₂ S	hydrogen sulfide	28.3	28.6	29.1	33.6	92.8
41	C ₃ H ₄	propyne	24.0	24.4	25.0	30.7	90.8
45	C ₂ H ₄ O	acetaldehyde	24.5	24.8	25.2	29.5	35.7
47	C ₂ H ₆ O	ethanol	6.7	8.1	9.9	28.4	126.0
49	CH ₄ S	methanethiol	21.0	22.4	24.3	43.2	119.2
55	C ₄ H ₆	butadiene	13.5	15.0	17.0	37.5	215.4
59	C ₃ H ₆ O	acetone	13.5	37.0	367.9	428.8	458.7
61	CH ₃ COOH	acetic acid	22.6	26.5	32.4	314.9	352.0
63	C ₂ H ₆ S	dimethylsulfide	21.1	22.6	24.7	46.2	163.5

67	C ₅ H ₆	ciclobutadiene	193.8	377.4	402.1	473.6	512.8
69	C ₅ H ₈	isoprene	35.4	150.8	305.5	367.3	392.5
71	C ₄ H ₆ O	crotonaldehyde	175.5	369.4	398.4	474.4	514.6
73	C ₄ H ₈ O	2-butanone	366.9	442.2	476.6	575.6	629.4
75	C ₃ H ₆ O ₂	propionic acid	12.6	28.1	61.3	397.2	450.4
77	C ₃ H ₈ S	propanethiol	20.6	33.4	73.5	396.1	435.2
79	C ₆ H ₆	benzene	34.8	50.1	164.4	337.0	369.6
81	C ₆ H ₈	ciclohexadiene	242.8	437.1	468.4	559.4	609.1
83	C ₅ H ₆ O	methylfuran	153.6	366.1	395.3	457.6	492.2
87	C ₅ H ₁₀ O	2-pentanone	164.1	360.9	387.4	451.3	484.8
89	C ₄ H ₈ O ₂	butyric acid	13.7	31.3	173.1	349.1	394.4
91	C ₄ H ₁₀ S	butanethiol	159.5	320.2	379.2	472.2	515.0
93	C ₇ H ₈	toluene	161.4	349.2	386.1	462.4	500.5
101	C ₆ H ₁₂ O	2-hexanone	123.2	348.0	380.1	451.0	487.4
105	C ₈ H ₈	styrene	223.8	420.8	455.7	552.0	603.5
107	C ₈ H ₁₀	xylene	46.6	368.2	396.8	466.9	503.8
109	C ₇ H ₈ O	benzilic acid	20.2	79.0	339.3	491.5	543.0
115	C ₇ H ₁₄ O	2-heptanone	129.6	304.7	348.2	408.0	437.9
119	C ₉ H ₁₀	methylstyrene	210.4	414.1	444.3	529.2	575.2
121	C ₉ H ₁₂	cumene	34.6	62.9	176.1	382.5	425.1
135	C ₁₀ H ₁₄	p-cymene	164.7	345.8	366.9	431.5	464.6
137	C ₁₀ H ₁₆	limonene	347.1	404.2	431.2	510.4	554.0
143	C ₉ H ₁₈ O	2-nonanone	143.1	328.4	357.2	414.6	443.9
205	C ₁₅ H ₂₄	sesquiterpene	32.1	153.8	316.7	391.2	419.3
223	C ₆ H ₁₈ O ₃ Si ₃	hexamethylcyclotrisiloxane	32.5	150.4	287.1	350.5	375.5

348

349 Considering the selected time limit (30 h), the saturation of the filter to toluene was 0.2%, 2-
 350 butanone 0.1%, p-cymene 0.1% and limonene 0.04%.

351 The time required to achieve 1% of the starting concentration is reported in Table 6. For aromatic
 352 compounds these times are the following: benzene with 34.8 h, xylene with 46.6 h, toluene with
 353 161.4 h and styrene with 223.8 h.

354 CHO compounds are less problematic for SOFC applications in terms of concentration in the biogas
355 fuel mixture. To achieve 1% of the starting concentration for the main CHO compounds, the
356 following times are necessary: ethanol with 6.7 h, acetone with 13.5 h, methylfuran with 153.6 h
357 and 2-butanone with 366.9 h. Even if lower than H₂S and D3, these compounds are less detrimental
358 for SOFC applications.

359 The time required for terpenes to achieve 1% of the starting concentration are showed below. These
360 values are sorted in ascending order: cumene with 34.5 h, isoprene with 35.4 h, p-cymene with
361 164.7 h and limonene with 347 h. When the time required to achieve the desired outlet
362 concentration is shorter, the resulting adsorption capacity is lower.

363 Biochar withstands the removal of 2-butanone, toluene and limonene better compared to the other
364 compounds. Hydrogen sulfide and D3 are crucial in terms of trace compounds removal due to their
365 strong and irreversible impact on SOFC performance. More attention should be payed to these
366 compounds in view of the long-term operation of SOFC co-generators.

367 **5. Preliminary economic analysis**

368 Despite biochar shows lower performance compared with commercial sorbent materials, a
369 preliminary economic evaluation can improve the choice of sorbent material. A similar evaluation
370 was accomplished with ashes as sorbent material and negative results were analyzed (Davide
371 Papurello et al., 2016d).

372 A schematic view of the pilot plant is reported, see Figure 5. As reported elsewhere, the pilot plant
373 must be optimized in terms of SOFC coupling with reformer and in terms of anaerobic digester in
374 order to increase the total electrical efficiency (Papurello et al., 2015a).

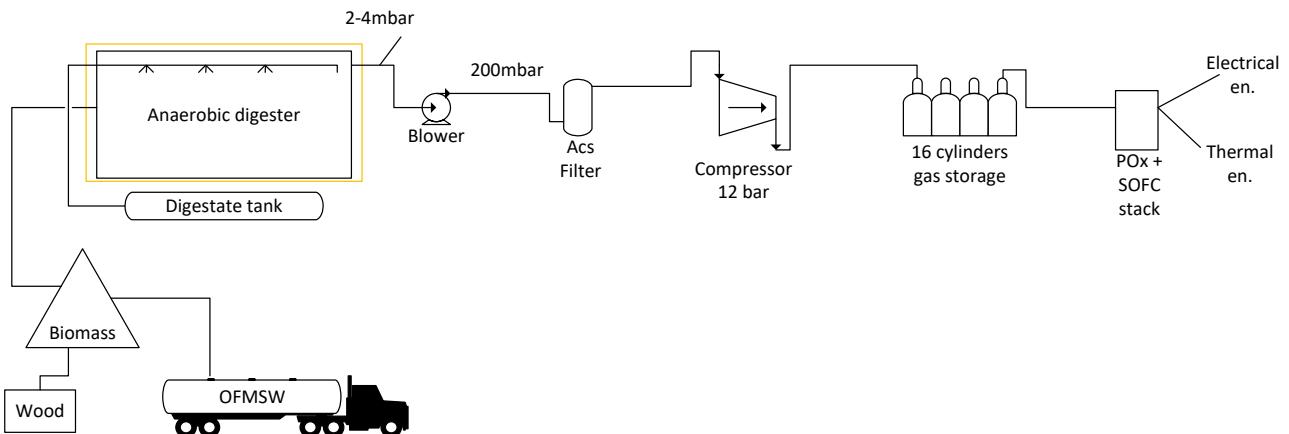


Figure 5 – Schematic view of the pilot plant – waste to energy concept

The goal of this section is essentially to clarify the role of the biochar as sorbent material in comparison to the other commercial adsorbents. The total costs of the sorbent material were divided in four different contributions. These costs are related to: the material purchase, the electricity for the plant operation, the replacement of spent material and the disposal costs as special waste (CER code 190904). The regeneration of spent sorbents has not been considered due to energy and additional material requirements. For the preliminary economic evaluations were considered the following points:

- Working time of the plant, 252 days;
- Reactor volume, 0.34 l;
- Average biogas flow, 300 Nl/h;
- Cost of electricity, 0.12 €/kWh;
- H₂S density, 1.36 kg/m³;
- Blower size, 250 W;
- H₂S concentration, 15 ppm(v);
- The disposal costs for carbons, 1.2 €/kg (APAT 2010);
- Costs for maintenance, 20 €/h;

393 • The bulk density ranged from 450 g/l to 550 g/l (carbons), biochar 615 g/l, ZnO 1090 g/l
 394 and ash 1035 g/l.

395 Two different breakthrough levels were selected in order to evaluate the adsorption capacity at 1%
 396 and at the saturation condition. The materials considered were: commercial carbons (RST3, Carbox,
 397 CKC, CKI and R8G), metallic oxide (ZnO) and waste materials (ashes and biochar).

398 Table 7 – Adsorption capacity and time to change for the gas cleaning filter

	RST3	Carbox	ZnO	CKC	CKI	R8G	Biochar	Ash
Cads (mg/g)-1%	0.94	1.1	2.4	2.5	2.3	18.7	1.1	0.0
Time to change (h)-1%	24.5	27.9	61.7	65.1	59.1	486.4	27.4	0.1
Cads (mg/g)-100 %	7.7	3.2	12.5	3.7	3.1	22.1	3.4	0.1
Time to change (h)	200.6	84.1	325.4	97.4	81.8	575.2	88.3	1.6

399

400 The biochar adsorption capacity at 1% is comparable with commercial activated carbon samples,
 401 RST3 and Carbox. Better results are achieved considering new commercial activated carbons such
 402 as CKC and CKI. This is due to different impregnating elements, such as metal oxides, alkali and
 403 alkaline hearth metals, such as CaO and FeO. The best performance are achieved considering the
 404 R8G sample. This is due to the impregnating agents but also it is due to the structure optimization
 405 made from the producer company (Sulfatrap, TDA USA). According to the adsorption capacity the
 406 time to change ratio of filter is directly linked to this parameter. In fact, sorbents with similar
 407 adsorption capacity show similar time to change ratio: biochar and Carbox with similar adsorption
 408 capacity (1.1 mg/g) show a 27.4 h and 27.9 h time to change ratio, respectively.

409 Table 8 – Costs sharing to achieve the breakthrough at 1%

1%	RST3	Carbox	ZnO	CKC	CKI	R8G	Biochar	Ash
p% material (%)	20.68	20.6	77.4	7.2	12.9	6.5	4.9	8.1
p% operating (%)	41.57	38.9	5.6	27.5	27.6	5.1	47.0	91.8
p% electricity (%)	33.9	36.4	11.9	62.2	56.4	87.9	43.2	0.2
p% disposal (%)	3.8	4.1	5.2	3.1	3.1	0.5	4.9	0.0

410

411

Table 9 – Costs sharing to achieve the breakthrough at 100%

sat	RST3	Carbox	ZnO	CKC	CKI	R8G	Biochar	Ash
p% material (%)	5.7	11.6	50.9	5.5	10.6	5.6	2.4	7.7
p% operating (%)	11.5	21.9	3.7	20.9	22.6	4.4	23.3	87.4
p% electricity (%)	81.6	64.2	42.1	71.3	64.3	89.6	71.8	4.9
p% disposal (%)	1.1	2.3	3.4	2.3	2.5	0.4	2.4	0.0

412

413 The main item that weighs on the economic evaluation of the commercial sorbent material to
 414 achieve the removal of H₂S is the electricity. The other term that contributes to the economic
 415 evaluation is the operating costs required for the material replacement. The costs sharing of biochar
 416 is divided into electricity (71.8%) and operating costs (23.3%), the remaining percentage is due to
 417 the material purchase and the disposal cost. The main contribution to the ashes is due to the
 418 operating work required for the sorbent replacement, due to the several changes needed. This
 419 solution, as reported elsewhere (Davide Papurello et al., 2016d) is not feasible. Biochar is
 420 comparable to some commercial carbons, such as RST3 and Carbox. R8G shows the lowest total
 421 costs, considering all the four contributions reported above. The other materials that follow R8G are
 422 reported in the following order: CKC, CKI, biochar and the other activated commercial carbons.
 423 Even if the performance of ZnO are considerable, the purchase cost of the material heavily weighs
 424 on the total cost that favors the choice of other materials.

425 Future works will be focused on the regeneration and activation studies of biochar, reducing the
 426 disposal and total cost.

427

6. Conclusions

428 The effectiveness of the adsorption process is mainly determined by the type of substance to be
 429 removed, even if in a real pilot plant this approach is almost prohibitive. It was decided to
 430 investigate on the removal performance of a sorbent material that comes from the waste chain
 431 treatment: biochar. This adsorbent material was tested in a real pilot plant and the outlet of the filter
 432 was monitored online with a PTR-MS instrument, for the first time. The performance achieved with

433 this material are comparable with those achieved by reference commercial carbons, even if some
434 most optimized and selective materials show better results.

435 The main economic terms that weighs on the biochar service life time is the electricity consumption
436 followed by the costs required for the material replacement.

437

438 **Acknowledgments**

439 This research is part of the BWS project (Biowaste for SOFCs) carried out with Fondazione
440 Edmund Mach and SOLIDpower SpA. The project is funded by the contribution of Fondazione
441 Caritro (TN). This research is also part of the DEMOSOFC project (European project Grant
442 agreement no: 671470).

443

444

445

446

447

448

449

450 **References**

451 Ahmad, M., Soo, S., Dou, X., Mohan, D., Sung, J., Yang, J.E., Sik, Y., 2012. Bioresource
452 Technology Effects of pyrolysis temperature on soybean stover- and peanut shell-derived
453 biochar properties and TCE adsorption in water. Bioresour. Technol. 118, 536–544.

454 doi:10.1016/j.biortech.2012.05.042

455 Aprea, E., Biasioli, F., Märk, T.D., Gasperi, F., 2007. PTR-MS study of esters in water and
456 water/ethanol solutions: Fragmentation patterns and partition coefficients. *Int. J. Mass
457 Spectrom.* 262, 114–121. doi:10.1016/j.ijms.2006.10.016

458 Arnold, M., 2009. Reduction and monitoring of biogas trace compounds, VTT Tiedotteita - Valtion
459 Teknillinen Tutkimuskeskus.

460 Barelli, L., Bidini, G., Arespacochaga, N. De, Laura, P., Sisani, E., 2017. Biogas use in high
461 temperature fuel cells : Enhancement of KOH-KI activated carbon performance toward H₂S
462 removal 2. doi:10.1016/j.ijhydene.2017.02.021

463 Barelli, L., Bidini, G., Desideri, U., Discepoli, G., Sisani, E., 2015. Dimethyl sul fi de adsorption
464 from natural gas for solid oxide fuel cell applications. *Fuel Process. Technol.* 140, 21–31.
465 doi:10.1016/j.fuproc.2015.08.012

466 Beauchamp, J., Herbig, J., Gutmann, R., Hansel, A., 2008. On the use of Tedlar® bags for breath-
467 gas sampling and analysis. *J. Breath Res.* 2, 46001. doi:10.1088/1752-7155/2/4/046001

468 Beghi, S., Guillot, J.-M., 2008. Use of poly(ethylene terephthalate) film bag to sample and remove
469 humidity from atmosphere containing volatile organic compounds. *J. Chromatogr. A* 1183, 1–
470 5. doi:10.1016/j.chroma.2007.12.051

471 Biasioli, F., Yeretzian, C., Märk, T.D., Dewulf, J., Van Langenhove, H., 2011. Direct-injection
472 mass spectrometry adds the time dimension to (B)VOC analysis. *TrAC - Trends Anal. Chem.*
473 30, 1003–1017. doi:10.1016/j.trac.2011.04.005

474 Blum, L., de Haart, L.G.J., Malzbender, J., Margaritis, N., Menzler, N.H., 2016. Anode-Supported
475 Solid Oxide Fuel Cell Achieves 70 000 Hours of Continuous Operation. *Energy Technol.* 4,
476 939–942. doi:10.1002/ente.201600114

477 Boschetti, A., Biasioli, F., Van Opbergen, M., Warneke, C., Jordan, A., Holzinger, R., Prazeller, P.,
478 Karl, T., Hansel, A., Lindinger, W., Iannotta, S., 1999. PTR-MS real time monitoring of the
479 emission of volatile organic compounds during postharvest aging of berryfruit. Postharvest
480 Biol. Technol. 17, 143–151. doi:10.1016/S0925-5214(99)00052-6

481 Brilli, F., Gioli, B., Ciccioli, P., Zona, D., Loreto, F., Janssens, I. a, Ceulemans, R., 2014. Proton
482 Transfer Reaction Time-of-Flight Mass Spectrometric (PTR-TOF- MS) determination of
483 volatile organic compounds (VOCs) emitted from a biomass fire developed under stable
484 nocturnal conditions. Atmos. Environ. 97, 54–67. doi:10.1016/j.atmosenv.2014.08.007

485 Buhr, K., Van Ruth, S., Delahunty, C., 2002. Analysis of volatile flavour compounds by Proton
486 Transfer Reaction-Mass Spectrometry: Fragmentation patterns and discrimination between
487 isobaric and isomeric compounds. Int. J. Mass Spectrom. 221, 1–7. doi:10.1016/S1387-
488 3806(02)00896-5

489 Demirbas, A., 2007. Products from Lignocellulosic Materials via Degradation Processes. Energy
490 Sources, Part A Recover. Util. Environ. Eff. 30, 27–37. doi:10.1080/00908310600626705

491 Eitzer, B.D., 1995. Emissions of volatile organic chemicals from municipal solid waste composting
492 facilities. Environ. Sci. Technol. 29, 896–902.

493 Facci, A.L., Cigolotti, V., Jannelli, E., Ubertini, S., 2016. Technical and economic assessment of a
494 SOFC-based energy system for combined cooling, heating and power. Appl. Energy.
495 doi:10.1016/j.apenergy.2016.06.105

496 Font, X., Artola, A., Sánchez, A., 2011. Detection, composition and treatment of volatile organic
497 compounds from waste treatment plants. Sensors 11, 4043–4059. doi:10.3390/s110404043

498 Hagen, A., Rasmussen, J.F.B., Thydén, K., 2011. Durability of solid oxide fuel cells using sulfur
499 containing fuels. J. Power Sources, Proceedings of 2010 European Solid Oxide Fuel Cell

500 Forum 196, 7271–7276. doi:10.1016/j.jpowsour.2011.02.053

501 Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Märk, L., Seehauser, H., Schottkowsky, R.,
502 Sulzer, P., Märk, T.D., 2009. A high resolution and high sensitivity proton-transfer-reaction
503 time-of-flight mass spectrometer (PTR-TOF-MS). *Int. J. Mass Spectrom.* 286, 122–128.
504 doi:10.1016/j.ijms.2009.07.005

505 Knighton, W.B., Herndon, S.C., Franklin, J.F., Wood, E.C., Wormhoudt, J., Brooks, W., Fortner,
506 E.C., Allen, D.T., 2012. Direct measurement of volatile organic compound emissions from
507 industrial flares using real-time online techniques: Proton transfer reaction mass spectrometry
508 and tunable infrared laser differential absorption spectroscopy. *Ind. Eng. Chem. Res.* 51,
509 12674–12684. doi:10.1021/ie202695v

510 Komilis, D.P., Ham, R.K., Park, J.K., 2004. Emission of volatile organic compounds during
511 composting of municipal solid wastes. *Water Res.* 38, 1707–1714.
512 doi:10.1016/j.watres.2003.12.039

513 Lomans, B.P., Van Der Drift, C., Pol, A., Op Den Camp, H.J.M., 2002. Cellular and Molecular Life
514 Sciences Microbial cycling of volatile organic sulfur compounds. *Cell. Mol. Life Sci.* 59, 575–
515 588.

516 Madi, H., Lanzini, A., Diethelm, S., Papurello, D., Van herle, J., Lualdi, M., Gutzon Larsen, J.,
517 Santarelli, M., 2015. Solid oxide fuel cell anode degradation by the effect of siloxanes. *J.*
518 *Power Sources* 279, 460–471. doi:10.1016/j.jpowsour.2015.01.053

519 Maghanki, M.M., Ghobadian, B., Najafi, G., Galogah, R.J., 2013. Micro combined heat and power
520 (MCHP) technologies and applications. *Renew. Sustain. Energy Rev.* 28, 510–524.
521 doi:10.1016/j.rser.2013.07.053

522 Mata-Alvarez, J., Macé, S., Llabrés, P., 2000. Anaerobic digestion of organic solid wastes. *An*

523 overview of research achievements and perspectives. *Bioresour. Technol.* 74.

524 Morozova, K., Romano, A., Lonardi, F., Ferrarini, R., Biasioli, F., Scampicchio, M., 2016.

525 Microcalorimetric monitoring of grape withering. *Thermochim. Acta* 630, 31–36.

526 doi:10.1016/j.tca.2016.01.011

527 Orzi, V., Cadena, E., Imporzano, G.D., Artola, A., Davoli, E., Crivelli, M., Adani, F., 2010.

528 Bioresource Technology Potential odour emission measurement in organic fraction of

529 municipal solid waste during anaerobic digestion : Relationship with process and biological

530 stability parameters. *Bioresour. Technol.* 101, 7330–7337. doi:10.1016/j.biortech.2010.04.098

531 Papadias, D.D., Ahmed, S., Kumar, R., 2012. Fuel quality issues with biogas energy - An economic

532 analysis for a stationary fuel cell system. *Energy* 44, 257–277.

533 doi:10.1016/j.energy.2012.06.031

534 Papurello, D., Borchiellini, R., Bareschino, P., Chiodo, V., Freni, S., Lanzini, A., Pepe, F.,

535 Ortigoza, G.A., Santarelli, M., 2014. Performance of a Solid Oxide Fuel Cell short-stack with

536 biogas feeding. *Appl. Energy* 125, 254–263.

537 Papurello, D., Lanzini, A., Drago, D., Leone, P., Santarelli, M., 2016a. Limiting factors for planar

538 solid oxide fuel cells under different trace compound concentrations. *Energy* 95, 67–78.

539 doi:10.1016/j.energy.2015.11.070

540 Papurello, D., Lanzini, A., Fiorilli, S., Smeacetto, F., Singh, R., Santarelli, M., 2016b. Sulfur

541 poisoning in Ni-anode solid oxide fuel cells (SOFCs): Deactivation in single cells and a stack.

542 *Chem. Eng. J.* 283, 1224–1233. doi:10.1016/j.cej.2015.08.091

543 Papurello, D., Lanzini, A., Leone, P., Santarelli, M., 2016c. The effect of heavy tars (toluene and

544 naphthalene) on the electrochemical performance of an anode-supported SOFC running on

545 bio-syngas. *Renew. Energy* 99, 747–753. doi:10.1016/j.renene.2016.07.029

546 Papurello, D., Lanzini, A., Leone, P., Santarelli, M., Silvestri, S., 2014a. Biogas from the organic
547 fraction of municipal solid waste: Dealing with contaminants for a solid oxide fuel cell energy
548 generator. *Waste Manag.*

549 Papurello, D., Lanzini, A., Schufried, E., Santarelli, M., Silvestri, S., 2013. Proton Transfer
550 Reaction-Mass Spectrometry (PTR-MS) as a rapid online tool for biogas VOCs monitoring in
551 support of the development of Solid Oxide Fuel Cells (SOFCs). *6th Int. PTR-MS Conf.* 130,
552 144–150. doi:10.1016/j.fuproc.2014.09.042

553 Papurello, D., Lanzini, A., Tognana, L., Silvestri, S., Santarelli, M., 2015a. Waste to energy:
554 Exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack.
555 *Energy* 85, 145–158. doi:10.1016/j.energy.2015.03.093

556 Papurello, D., Schuhfried, E., Lanzini, A., Romano, A., Cappellin, L., Märk, T.D., Silvestri, S.,
557 Biasioli, F., 2014b. Influence of co-vapors on biogas filtration for fuel cells monitored with
558 PTR-MS (Proton Transfer Reaction-Mass Spectrometry). *Fuel Process. Technol.* 118, 133–
559 140. doi:10.1016/j.fuproc.2013.08.011

560 Papurello, D., Schuhfried, E., Lanzini, A., Romano, A., Cappellin, L., Märk, T.D., Silvestri, S.,
561 Santarelli, M., Biasioli, F., 2015b. Proton transfer reaction-mass spectrometry as a rapid inline
562 tool for filter efficiency of activated charcoal in support of the development of Solid Oxide
563 Fuel Cells fueled with biogas. *Fuel Process. Technol.* 130, 78–86.
564 doi:10.1016/j.fuproc.2014.09.042

565 Papurello, D., Soukoulis, C., Schuhfried, E., Cappellin, L., Gasperi, F., Silvestri, S., Santarelli, M.,
566 Biasioli, F., 2012. Monitoring of volatile compound emissions during dry anaerobic digestion
567 of the Organic Fraction of Municipal Solid Waste by Proton Transfer Reaction Time-of-Flight
568 Mass Spectrometry, in: *Bioresource Technology*. pp. 254–265.

569 Papurello, D., Tognana, L., Lanzini, A., Smeacetto, F., Santarelli, M., Belcari, I., Silvestri, S.,

570 Biasioli, F., 2015c. Proton transfer reaction mass spectrometry technique for the monitoring of
571 volatile sulfur compounds in a fuel cell quality clean-up system. *Fuel Process. Technol.* 130,
572 136–146. doi:10.1016/j.fuproc.2014.09.041

573 Papurello, D., Tomasi, L., Silvestri, S., Belcari, I., Santarelli, M., Smeacetto, F., Biasioli, F., 2016d.
574 Biogas trace compound removal with ashes using proton transfer reaction time-of-flight mass
575 spectrometry as innovative detection tool. *Fuel Process. Technol.* 145, 62–75.
576 doi:10.1016/j.fuproc.2016.01.028

577 Papurello, D., Tomasi, L., Silvestri, S., Santarelli, M., 2016. Evaluation of the Wheeler-Jonas
578 parameters for biogas trace compounds removal with activated carbons. *Fuel Process. Technol.*
579 152, 93–101. doi:10.1016/j.fuproc.2016.06.006

580 Pet'ka, J., Étievant, P., Callement, G., 2000. Suitability of different plastic materials for head or
581 nose spaces short term storage. *Analusis* 28, 330–335. doi:10.1051/analusis:2000123

582 Pierucci, P., Porazzi, E., Martinez, M.P., Adani, F., Carati, C., Rubino, F.M., Colombi, A.,
583 Calcaterra, E., Benfenati, E., 2005. Volatile organic compounds produced during the aerobic
584 biological processing of municipal solid waste in a pilot plant. *Chemosphere* 59, 423–430.
585 doi:10.1016/j.chemosphere.2004.10.040

586 Rasi, S., Läntelä, J., Rintala, J., 2011. Trace compounds affecting biogas energy utilisation - A
587 review. *Energy Convers. Manag.* 52, 3369–3375. doi:10.1016/j.enconman.2011.07.005

588 Richardson J., Bjørheden R., Hakkala P., Lowe AT., S.C., 2002. Bioenergy from sustainable
589 forestry - guiding principles and practice, Kluwer academic publisher. Kluwer academic
590 publisher, New York, Boston, Dordrecht, London, Moscow.

591 Sasaki, K., Haga, K., Yoshizumi, T., Minematsu, D., Yuki, E., Liu, R., Uryu, C., Oshima, T.,
592 Ogura, T., Shiratori, Y., Ito, K., Koyama, M., Yokomoto, K., 2011. Chemical durability of

593 Solid Oxide Fuel Cells: Influence of impurities on long-term performance. *J. Power Sources*
594 196, 9130–9140. doi:10.1016/j.jpowsour.2010.09.122

595 Scaglia, B., Orzi, V., Artola, a., Font, X., Davoli, E., Sanchez, a., Adani, F., 2011. Odours and
596 volatile organic compounds emitted from municipal solid waste at different stage of
597 decomposition and relationship with biological stability. *Bioresour. Technol.* 102, 4638–4645.
598 doi:10.1016/j.biortech.2011.01.016

599 Shang, G., Li, Q., Liu, L., Chen, P., Huang, X., 2016. Adsorption of hydrogen sulfide by biochars
600 derived from pyrolysis of different agricultural / forestry wastes. *J. Air Waste Manage. Assoc.*
601 66, 8–16. doi:10.1080/10962247.2015.1094429

602 Shang, G., Shen, G., Liu, L., Chen, Q., Xu, Z., 2013. *Bioresource Technology Kinetics and*
603 *mechanisms of hydrogen sulfide adsorption by biochars. Bioresour. Technol.* 133, 495–499.
604 doi:10.1016/j.biortech.2013.01.114

605 Shiratori, Y., Ijichi, T., Oshima, T., Sasaki, K., 2010. Internal reforming SOFC running on biogas.
606 *Int. J. Hydrogen Energy, The 10th Chinese Hydrogen Energy Conference* 35, 7905–7912.
607 doi:10.1016/j.ijhydene.2010.05.064

608 Singer, W., Herbig, J., Gutmann, R., Winkler, K., Kohl, I., Hansel, A., 2011. Applications of PTR-
609 MS in Medicine and Biotechnology. *Life Sci. Solut. Am. Lab.* 2–5.

610 Sisani, E., Cinti, G., Discepoli, G., Penchini, D., Desideri, U., Marmottini, F., 2014. Adsorptive
611 removal of H₂S in biogas conditions for high temperature fuel cell systems. *Int. J. Hydrogen*
612 *Energy* 39, 21753–21766. doi:10.1016/j.ijhydene.2014.07.173

613 Staley, B.F., Xu, F., Cowie, S.J., Barlaz, M.A., Hater, G.R., 2006. Release of trace organic
614 compounds during the decomposition of municipal solid waste components. *Environ. Sci.*
615 *Technol.* 40, 5984–5991. doi:10.1021/es060786m

616 Tepper, F., n.d. Alkali metal, Chemical element [WWW Document]. Encycl. Br. Online. URL
617 <http://www.britannica.com/science/alkali-metal> (accessed 9.3.15).

618 Torii, R., Tachikawa, Y., Sasaki, K., Ito, K., 2016. Anode gas recirculation for improving the
619 performance and cost of a 5-kW solid oxide fuel cell system. *J. Power Sources* 325, 229–237.
620 doi:10.1016/j.jpowsour.2016.06.045

621 Turco, M., Ausiello, A., Micoli, L., 2016. The Effect of Biogas Impurities on SOFC, in: Treatment
622 of Biogas for Feeding High Temperature Fuel Cells: Removal of Harmful Compounds by
623 Adsorption Processes. Springer International Publishing, Cham, pp. 137–149.
624 doi:10.1007/978-3-319-03215-3_6

625 Vairavamurthy, A., Mopper, K., 1987. Geochemical formation of organosulphur compounds
626 (thiols) by addition of H₂S to sedimentary organic matter. *Nature* 329, 623–625.

627 van Harreveld, A.P., 2003. Odor concentration decay and stability in gas sampling bags. *J. Air
628 Waste Manag. Assoc.* 53, 51–60.

629 Van Herle, J., Membrez, Y., Bucheli, O., 2004. Biogas as a fuel source for SOFC co-generators. *J.
630 Power Sources* 127, 300–312. doi:10.1016/j.jpowsour.2003.09.027

631 Wang, X., Wu, T., 2008. Release of isoprene and monoterpenes during the aerobic decomposition
632 of orange wastes from laboratory incubation experiments. *Environ. Sci. Technol.* 42, 3265–
633 3270.

634 Yuan, B., Hu, W.W., Shao, M., Wang, M., Chen, W.T., Lu, S.H., Zeng, L.M., Hu, M., 2013. VOC
635 emissions, evolutions and contributions to SOA formation at a receptor site in eastern China.
636 *Atmos. Chem. Phys.* 13, 8815–8832. doi:10.5194/acp-13-8815-2013

637