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with an almost exclusively immunomodulatory function. However, their 

recent identification in mammalian brain areas, as well as in distinct 

neuronal cells, has opened the way to a re-consideration of CB2 signaling 

in the context of brain pathophysiology, synaptic plasticity and 

neuroprotection. To date, accumulated evidence from several independent 

preclinical studies has offered new perspectives on the possible 

involvement of CB2 signaling in brain and spinal cord traumatic injury, 

as well as in the most relevant neurodegenerative disorders like 

Alzheimer's disease, Parkinson's disease and Huntington's chorea. Here, 

we will review available information on CB2 in these disease conditions, 

along with data that support also its therapeutic potential to treat 

them. 
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Abstract 

Based on its wide expression in immune cells, type 2 cannabinoid (CB2) receptors were 

traditionally thought to act as “peripheral receptors” with an almost exclusively 

immunomodulatory function. However, their recent identification in mammalian brain areas, as 

well as in distinct neuronal cells, has opened the way to a re-consideration of CB2 signaling in the 

context of brain pathophysiology, synaptic plasticity and neuroprotection. To date, accumulated 

evidence from several independent preclinical studies has offered new perspectives on the possible 

involvement of CB2 signaling in brain and spinal cord traumatic injury, as well as in the most 

relevant neurodegenerative disorders like Alzheimer’s disease, Parkinson’s disease and 

Huntington’s chorea. Here, we will review available information on CB2 in these disease 

conditions, along with data that support also its therapeutic potential to treat them.  
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Chemical compounds studied in this article 

 

JWH-015 (PubChem CID: 4273754); JWH-133 (PubChem CID: 6918505); HU-308 (PubChem 

CID: 101014676); AM630 (PubChem CID: 4302963); SR144528 (PubChem CID: 3081355); 

WIN 55,212-2 (PubChem CID: 6604176); PF3845 (PubChem CID: 25154867). 

 

1. Introduction 

Over the last two decades, the endocannabinoid (eCB) system has emerged as a prominent lipid 

signaling network widely expressed in the body, and involved in multiple adaptive responses to 

stressful internal and/or environmental insults [1]. The eCB system comprises endogenous lipid 

transmitters, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) ― known as 

endocannabinoids, eCBs (Figure 1) ―,  their G-protein-coupled receptors (GPCRs), namely, type-

1 (CB1) and type-2 (CB2) cannabinoid receptors, and the proteins responsible for eCB 

biosynthesis, inactivation, transport and accumulation [2-4].  

 Within the central nervous system (CNS), the eCB system is considered one of the major 

players in regulating the activity of various neurotransmitters, thus participating in synaptic 

plasticity [5]. In addition, eCBs and their receptors are involved in neuroprotective pathways, 

whereby they modulate neuronal, glial and endothelial cell functions to produce neuromodulatory, 

anti-excitotoxic, anti-inflammatory and anti-oxidative effects [6,8]. Indeed, several preclinical 

studies have opened new perspectives on the possible therapeutic potential of eCB signaling in 

neurological disorders, and notably in neurotraumatic and neurodegenerative diseases [9-16]. 

Most of the beneficial effects documented for cannabinoid-based drugs under these pathological 

conditions have been ascribed to CB1, the most abundant GPCR in the brain; instead, an 

immunomodulatory effect has been traditionally attributed to CB2, that is clearly present in 
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immune cells [17-18]. However, recent evidence suggests that CB2 is much more widely 

distributed in the CNS than originally thought, where it plays an unexpected neuroprotectant role. 

Here, we will review available information supporting the therapeutic potential of CB2 in 

different neurological disorders. In the first part of the paper, current knowledge on CB2 structure, 

expression and signaling will be briefly summarized. Next, we will focus on the involvement of 

this receptor in brain and spinal cord injury, as well as in three of the most important chronic 

neurodegenerative disorders in humans: Alzheimer’s disease (AD), Parkinson’s disease (PD) and 

Huntington’s disease (HD), where protective effects and therapeutic potential of CB2 have been 

studied more in depth. 

2. Type-2 cannabinoid receptor  

CB2 was identified and cloned in 1993 (3 years after CB1) from the marginal zones of the spleen 

and HL60 promyelocytic leukemic cell line [19]. Its cloning, structure and distribution in human 

tissues have been recently described in comprehensive reviews [20-21]. 

Briefly, CB2 gene CNR2 is located on chromosome 1p36 in humans and the comparison 

among species revealed that this gene is less divergent than CB1, with a sequence identity of 82% 

between human and mouse, and 81% between human and rat. Structurally CB2 shares 44% amino 

acid identity with CB1, and is constituted by a single polypeptide chain with a 7-transmembrane 

domain, an extracellular glycosilated N-terminus and an internal C-terminus domain [20-21].  

In healthy brain, CB2 is barely detectable, although recent evidence suggests that it is 

expressed in some neuronal populations [22-24]. Remarkably, CB2 expression can increase in 

neuronal and glial cells (e.g., astrocytes and microglial cells) following brain trauma or under 

other pathological conditions (see below).  

Similarly to CB1, CB2 has an extremely complex signaling activity that is cell-type-

specific, agonist-specific and/or dose-dependent [25]. In particular, CB2 is coupled to 
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heterotrimeric Gi/o proteins through which it triggers multiple signal transduction pathways that 

are involved in cell proliferation, differentiation and survival, and include: i) adenylyl cyclase and 

cyclic AMP-protein kinase A (PKA); ii) extracellular signal-regulated kinase 1 (ERK1) and 

ERK2; and iii) p38 mitogen-activated protein kinase and JUN N-terminal kinases (JNKs) [20-21, 

26]. In addition, it has been also demonstrated that CB2 is coupled, via inositol trisphosphate 

receptor, to Ca
2+

-activated Cl
-
 channels in pyramidal neurons of the rodent medial prefrontal 

cortex, suggesting that also this receptor may regulate ion homeostasis and neuronal excitability 

[27]. 

Based on its ability to modulate neuronal and glial functions, generally in a pro-

homeostatic manner, CB2 is currently regarded as a promising target for multimodal drug 

approaches to treat neurological conditions. In particular, CB2 activation can promote neuronal 

homeostasis and survival by acting at multiple levels: i) on neurons, by inhibiting excitotoxicity, 

oxidative stress and apoptosis [10, 27-29]; ii) on astrocytes, by promoting the release of pro-

survival (e.g., transforming growth factor-β) and anti-inflammatory (e.g., interleukin-10 and 

interleukin-1 receptor antagonist) mediators [30-31]; and iii) on microglial cells and other 

invading immune cells, by controlling their inflammatory response in terms of cell migration and 

cytokine production [20-21, 26, 32].  

In the next sections we will summarize data on the pivotal role of CB2 in neurotraumatic 

injuries and in AD, PD and HD. 

3. CNS injury  

Spinal cord injury (SCI) and traumatic brain injury (TBI) are the leading causes of invalidity and 

mortality for young people worldwide [33]. Pathologic sequelae after neurotrauma can be divided 

into primary and secondary injuries. Primary or direct injury encompasses the immediate damages 

to the CNS, including mechanical processes like shearing, laceration and stretching of nerve 
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fibers, which occur at the time of the impact [34-35]. These initial events are irreversible and only 

amenable to preventative measures. Secondary or delayed injury is made up of the delayed 

pathophysiological events that are initiated by the impact in the site of lesion, and evolves over 

subsequent days or months, accounting for much of the morbidity following CNS injury [36]. The 

pathophysiology of secondary injury is very complex and involves multiple injury mechanisms 

that are spatially and temporally specific. Indeed, after focal CNS injury neurodegeneration is not 

restricted to the primary lesion site, nor in its adjacent areas, but appears also in regions that are 

functionally connected − but not contiguous − to the focal lesion [37]. This phenomenon, also 

known as ‟remote damage”, may contribute to neurological deficits associated with the secondary 

lesion [38]. Different mechanisms have been proposed to account for neurodegeneration upon 

brain damage associated with both TBI and SCI, including exacerbated inflammatory response, 

dysregulated neurotransmitter release and changes in the pro-survival signaling pathways [37]. 

 In this context, it is noteworthy that a substantial increase in the production of AEA and 

2-AG has been observed in brain parenchyma after different type of TBI and SCI [39-42]. 

Increased eCB concentration, and thus enhanced eCB signaling, is thought to prevent 

neurodegeneration by regulating key-processes known to be engaged in neuronal homeostasis and 

survival, overall triggering anti-excitotoxic, anti-apoptotic, anti-oxidative and anti-inflammatory 

mechanisms [7, 32, 40, 43].   

Accumulated evidence of constitutive and/or inducible expression of CB2 in non-immune 

cells within the CNS, like neurons and endothelial cells [10, 22, 24, 44-45], along with the 

efficacy of genetic and pharmacological deletion of CB2 in ameliorating paradigms of brain injury, 

have recently highlighted a direct involvement of this receptor subtype in neurovascular and 

neuronal protection. The pathophysiological relevance of CB2 in the context of brain injury is 

sustained by several lines of evidence. Firstly, CB2 expression is markedly up-regulated upon 

tissue damage in different models of focal brain injury and SCI [10, 29, 41, 46]. Notably, CB2 
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appear upregulated in inflammatory, neuronal and endothelial cells, presumably as part of an 

endogenous pro-homeostatic response that allows them to limit altogether neuroinflammation and 

blood-brain barrier disruption, and to promote neuronal survival and neurogenesis [9, 47]. 

Secondly, CB2 agonists (Tables 1 and 2) exerted beneficial effects, generally reverted by CB2 

antagonists, in pre-clinical models of TBI [10, 29, 48-51] and SCI [52-56]. Of note, in one report 

it was also reported an exacerbation of neurotraumatic damages by AM630 used alone in a model 

of SCI [55], suggesting that CB2 antagonism could be detrimental per se. The beneficial effects of 

CB2 agonists in these models include improvement in motor function, attenuation of 

neuroinflammation, neurodegeneration and blood-brain barrier disruption (Table 2). Thirdly, 

transgenic mice where CB2-encoding gene CNR2 was ablated (CB2
-/-

) exhibited larger cerebral 

injury and inflammation upon craniotomy [57]. Finally, in two different experimental models of 

remote neurodegeneration, we found that stimulation of CB2 signaling by the selective agonist 

JWH-015 (Table 1) triggered a cascade of molecular and cellular events engaging 

Akt/phosphatidylinositide 3-kinase signaling pathway, which limits severity of neurodegeneration 

associated with the late stages of axotomy [10, 29, 56]. In particular, we demonstrated that after 

axotomy CB2 agonism was able to: i) increase neuronal nitric oxide synthase (NOS) expression 

and activity in neurons; ii) reduce inducible NOS expression and activity in astrocytes; iii) 

attenuate oxidative/nitrative stress in damaged neurons; iv) increase the levels of proteins that 

mediate anti-oxidative (heat skock protein 70) and anti-apoptotic (Bcl-2) mechanisms; and v) 

reduce neurodegeneration and neuroinflammation [29]. These findings are schematically depicted 

in Figure 2. 

Collectively, most of the available evidence supports the notion that selective targeting of 

CB2 may by an useful strategy to treat SCI and TBI by eliciting multiple cell-specific responses, 
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from anti-excitotoxicity and antioxidant defense to vasodilatory, neuromodulatory and 

immunomodulatory actions, which help to restore brain homeostasis following neurotrauma. 

4. Alzheimer’s disease 

AD is a progressive, degenerative, and irreversible neurological disorder, which kills brain 

neurons, thus causing loss of intellectual and social skills [58]. From the pathological point of 

view, AD is characterized by the accumulation in the brain of senile plaques and neurofibrillary 

tangles, that are insoluble aggregates of amyloid-β (Aβ) peptides and hyperphosphorylated tau, 

respectively [59]. These neuropathological characteristics are linked to synapse dysfunctions and 

progressive loss of specific neuronal populations, especially in brain regions serving memory and 

other cognitive functions. Noteworthy, other invariant hallmarks of AD are exacerbated 

neuroinflammation (due to hyperactivation of both resident and infiltrated innate and adaptive 

immune cells), excitotoxicity and oxidative stress. Despite decades of intensive research, AD 

remains incurable. Current therapies mainly target cholinergic and N-methyl-D-aspartate receptor 

pathways, and provide only symptomatic relief. Unfortunately, different drugs that target Aβ and 

tau have failed in Phase III clinical trials [60]. Therefore, identification of novel therapeutic targets 

that may prevent or delay disease progression is dramatically needed. 

In line with its inducible nature, CB2 has been found to be upregulated in the hippocampus 

of AD patients [61]. In particular, in different areas (i.e., hippocampus, entorhinal and frontal 

cortex) of postmortem brains from patients with AD, CB2 was found to be upregulated in neuritic 

plaque-associated astrocytes and microglia, whereas CB1 expression remained unchanged [62-64]. 

Consistently, marked increase in the expression and activity of CB2 in glial elements (i.e., 

astrocytes and microglial cells) has been found also in different AD-like animal models, including 

transgenic mice and Aβ-injected rats [24, 65-68] (Table 2). 
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 Much alike other pathological conditions, it is believed that up-regulation of CB2 

signaling in AD represents an adaptive response aimed at reducing associated inflammatory 

processes [9]. Indeed, in vitro activation of CB2 reduced the production of neurotoxic factors (e.g., 

nitric oxide and reactive oxygen species) and of proinflammatory mediators (e.g., tumor necrosis 

factor, TNF-α, and interleuchin-6, IL-6) by reactive astrocytes and microglial cells [63, 69-71] 

(Table 1 and Table 3). Moreover, activation of CB2 was found to stimulate other relevant 

biological activities of microglial cells, most notably phagocytic activity [71], proliferation [72], 

and migration at lesioned sites [73]. Altogether, these activities could contribute to protect neurons 

against Aβ-toxicity.  

Also the therapeutic potential of CB2 has been adequately documented in animal models of 

AD. For example, pharmacological activation of this receptor was found to reduce Aβ-toxicity, by 

mitigating neuroinflammation, neurodegeneration and cognitive decline in Aβ-injected rodents 

[63, 66, 74-75]. Consistently, stimulation of CB2 induced beneficial effects in Tg2576 mice, a 

transgenic model of AD that expresses high levels of human mutant (K670N/M671L) amyloid 

precursor protein (APPSwe) [76]. In these animals, chronic administration of JWH-133, a 

selective CB2 agonist (Table 1), markedly lowered Aβ production, reducing reactive microglia and 

expression of COX-2 and TNF-α, and improving cognitive performance in old mice [76]. 

Similar results were reported in APPSwe/PS1ΔE9 mice, another transgenic model of AD 

that co-expresses human mutated forms of APP (APPSwe) and presenilin 1 (PS1ΔE9); as a 

consequence, numerous amyloid deposits were developed much earlier than age-matched Tg2576 

mice. APPSwe/PS1ΔE9 animals treated with JWH-133, during both pre-symptomatic and early 

symptomatic stage, significantly improved their learning and memory performances compared to 

vehicle-treated mice [68]. Although long-term stimulation of CB2 did not influence Aβ 

production and deposition in the brain cortex, it did produce remarkable anti-inflammatory effects, 

and reduced the number of neuritic-associated reactive microglial cells, as well as the expression 
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of several proinflammatory cytokines, such as IL-1β, IL-6, TNF-α and IFN-γ. Notably, these anti-

inflammatory effects were associated with a reduction of oxidative stress damage and tau 

hyperphosphorylation in neuritic plaques [68]. The key role of CB2 in modulating microglial 

activity has been further confirmed in J20APP mice, an AD-like model expressing mutated APP 

(K670N/M671L/V717F) in cerebral neurons, especially of neocortex and hippocampus [77]. In 

these animals, deletion of CB2 led to increased Aβ production and deposition, confirming the 

likely constitutive role of CB2 in reducing amyloid plaque pathology in AD. Interestingly, 

although CB2 deletion did not influence whole brain microgliosis, it did cause enhanced plaque-

associated microglia, suggesting that this receptor subtype is essential for microglial phagocytic 

activity, even though it is not strictly necessary for chemotaxis of microglia to regions of plaque 

deposition [77]. Apparently, conflicting results have been obtained in an independent study on 

APPSwe/PS1ΔE mice that lacked CB2 [78]. This study showed that CB2 deficiency affected both 

recruitment of macrophages into the brains of AD mice, and ability to activate microglia. 

Furthermore, CB2
-/-

 mice showed lower expression of pro-inflammatory chemokines and 

cytokines in the brain, as well as reduced amounts of soluble Aβ 40/42. Notably, the reduction in 

neuroinflammation did not affect spatial learning and memory in APPSwe/PS1ΔE/CB2
-/-

 mice. 

Collectively, all these findings show remarkable changes in expression and/or activity of 

CB2 receptor in different paradigms of AD, encouraging further research on the therapeutic 

potential of manipulation of CB2 signaling in context of this neurodegenerative disorder (Table 3). 

 

5. Parkinson’s disease 

PD is the second most common neurodegenerative disorder after AD, and is the most prevalent 

affecting the basal ganglia. The motor pathological symptoms include bradykinesia, rigidity, 

tremor as well as postural instability, typical in the late stages of the disease. They are due to a 
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progressive degeneration of dopaminergic neurons of the substantia nigra pars compacta (SNpc), 

that produces dopaminergic denervation of the striatum, thus altering motor function and the 

whole basal ganglia circuit. 

Overactivity of eCB system has been observed in PD patients and in animal models of this 

disease [79-84]. Moreover, several evidences support the role of CB1 in reducing motor inhibition 

typical of PD patients [85-87], as well as in enhancing the therapeutic effect of moderate doses of 

levodopa [11, 84, 87]. Neuroinflammation has emerged as a key component of PD pathogenesis in 

1998, with the assessment of activated microglia in the SN of patients at post-mortem [88]. Thus, 

CB2 expressed in glial elements may participate in modulating homeostasis and survival. The 

involvement of CB2 in nigrostriatal cell loss was detected in a classic rodent model of PD, induced 

by injection of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), known to 

induce neurotoxicity and neuroinflammation in mice [89] (Table 3). It was found that protection 

by non-selective CB1/CB2 agonists against MPTP-induced loss of tyrosine hydroxylase (TH) 

positive neurons in the SNpc was mediated by CB2, but not by CB1. Moreover, activation of CB2 

by selective CB2 agonists reduced microglial activation and/or infiltration, in the ventral midbrain 

of MPTP-treated mice; moreover, pharmacological inactivation of CB2 reverted this effect [89]. 

The beneficial action of CB2 in PD was evaluated in a well-established model of pronounced 

nigrostriatal inflammation associated with PD, leading to nigrostriatal dopaminergic neuron loss 

and motor impairment [90-91], induced in mice by intrastriatal injection of endotoxin 

lipopolysaccharides (LPS) [92]. In particular, up-regulation of CB2 in the SN of LPS-treated mice 

compared with contralateral non-lesioned structures, and the protective effect of the selective CB2 

agonist HU-308 (Table 1) on TH positive neurons in these animals, both supported CB2 as 

promising target to alleviate symptoms and to delay neurodegeneration typical of PD [92]. In 

order to facilitate preclinical development of drugs targeting CB2, changes that occur in the eCB 

system at large, and in CB2 expression in particular, were investigated and compared in two 
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widely-used animal models of AD: LPS-lesioned and 6-hydroxydopamine-lesioned rats [93]. The 

model induced by injection of catecholaminergic neurotoxin is associated with selective 

nigrostriatal dopaminergic neuron loss and stable motor deficits, as well as with nigrostriatal 

neuroinflammation [94-96]. Intra-striatal injections of either 6-hydroxydopamine or LPS caused 

contralateral motor dysfunction and striatal neuroinflammation, that where associated with 

increased expression of CNR2 [93]. Up-regulation of CB2, more pronounced in LPS than in 6-

hydroxydopamine model, correlated with elevations in AEA and 2-AG levels, and with the 

expression of the microglial marker CD11b, a β-integrin [93]. Experimental evidence revealed a 

different dysregulation of eCB system in different models of PD, and highlighted the prominent 

role of microglial CB2 in the inflammatory environment in PD [93]. In addition, CB2 was found in 

the human post-mortem SN, and its expression in TH positive neurons decreased in PD patients 

compared with controls [97]. Importantly, up-regulation of CB2 observed in MPTP- [89] and LPS-

lesioned rats [92] has been recently assessed also in post-mortem SN of PD patients compared 

with healthy subjects [98]. CB2 enhancement was associated with increased levels of Iba-1, a 

marker of microglial cells, and of CD68, a marker of activated microglia, macrophages and 

monocytes that was probably recruited at lesioned sites [98]. Moreover, by using LPS-lesioned 

mice administration of the selective CB2 agonist HU-308 was shown to reverse LPS-induced 

striatal elevation of both CD68 and proinflammatory inducible NOS, paralleled by a reduction in 

TH immunostaining [98]. Collectively, these findings suggest that targeting CB2 might represent a 

novel therapeutic opportunity to combat PD. In this context, it should be recalled that also plant-

derived (phyto-) cannabinoids (Figure 3) have been investigated against neurodegeneration, due to 

their ability to activate CB2 but not CB1 (that may even be blocked by them), and to their 

remarkable antioxidant properties. To this aim, cannabidiol (CBD) and Δ
9
-tetrahydrocannabivarin 

(THCV) exhibited neuroprotective effects along with the ability to ease symptoms in different 
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animal models of PD [13, 92, 99], showing a promising pharmacological profile that might be 

useful to design novel anti-parkinsonian therapeutics.  

In conclusion, up-regulation of CB2 and subsequent neuroprotection against local 

inflammation and gliosis due to receptor activation, clearly encourage the therapeutic exploitation 

of CB2 agonists against PD. Indeed, the ability to reduce inflammation through CB2 activation, 

together with the ability to reduce motor disturbance by blocking CB1 and to exert antioxidant 

activity, could be the right combination required for novel anti-parkinsonian drugs.  

 

6. Huntington’s disease 

HD is a neurodegenerative genetic disorder caused by a mutation (CAG trinucleotide expansion) 

in exon 1 of the IT15 gene coding for huntingtin on chromosome 4 [100]. HD is characterized by 

abnormal involuntary movements collectively called chorea, which are produced by a neuronal 

dysfunction in the striatum, and dementia caused by neuronal decline in the cortical structures. 

Several studies have supported the relevance of both CB1 and CB2 as potential targets for 

neuroprotective therapies of HD. Several independent studies have documented down-regulation 

of CB1 in post-mortem HD patients and in mouse models of HD [101-104]. CB1 loss affected 

medium spiny GABA-ergic neuron, and occurred prior to damage of other receptors. Conversely, 

a recent study suggested a restricted population of CB1 receptors located on cortical glutamatergic 

neurons, preserved during HD, as first players in mediating neuroprotection against HD [105]. The 

involvement of CB2 in HD has been investigated in different animal models and in post-mortem 

patients, and a role in neuroinflammatory processes has been highlighted (Table 3). In particular, 

the selective CB2 agonist HU-308 (Table 1) reduces the magnitude of striatal lesions induced in 

mice by the mitochondrial complex II inhibitor toxin malonate [106]. The effect of this CB2 

agonist was reverted by the selective CB2 antagonist SR144528, and toxin-induced lesions were 

more pronounced upon genetic CB2 ablation. Moreover, striatal CB2 expression increased in 
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reactive microglial cells in response to neurodegeneration produced by the toxin, and its activation 

attenuated malonate-induced increase in TNF-α levels [106]. The ability of CB2 to decrease 

microglial activation and to prevent neurodegeneration was reported also in different transgenic 

mice models [107-108] (Table 3). CB2 transcripts were increased in the striatal microglia of R6/2 

transgenic mice model, that expresses exon 1 of human mutant huntingtin [109], both at pre-

symptomatic and at symptomatic stages. In addition, genetic CB2 ablation enhanced microglial 

activation in R6/2 mice [107], and exacerbated disease symptomatology [107]. In keeping with 

these data, deterioration of motor deficits due to deletion of CB2 was also confirmed in a slowly 

progressing model of HD, the so called BACHD mice [108]. In addition, two studies have 

investigated CB2 expression in post-mortem human tissues, reporting apparently divergent results 

[107, 110]. Increased expression of CB2 was reported in CD68-positive microglia but not in cells 

positive to the astrocyte marker GFAP in caudate putamen of HD patients [107]. Instead, CB2 

staining was found to be expressed in human post-mortem striatum of HD patients, but it did not 

co-localize with GFAP-positive astrocytes nor with Iba1-positive microglia [110]. Even though 

the reason of this apparent discrepancy remains unclear, it may be simply due to the reagents used 

(e.g., antibodies specificity). On a final note, also the beneficial effect of the phytocannabinoids 

Δ
9
-THC and CBD, alone or in combination in the form of Sativex®, has been investigated in 

several animal models of HD. Their action was reported to be mediated by multiple mechanisms 

including CB1, CB2, additional eCB-binding receptors like peroxisome proliferator-activated 

receptor, or even non-eCB targets [106, 111-112]. In addition, controversial results were obtained 

by using phytocannabinoids in clinical trials of HD [113], and unfortunately a recent phase II 

clinical trial with Sativex® failed [114]. More recently, also the effects of cannabigerol (CBG), a 

non-psychotropic phytocannabinoid, was investigated in both R6/2 and 3NP-lesioned mice models 

of HD [115]. CBG preserved striatal neurons death and neurological deterioration, although these 

effects were much more evident in 3NP-lesioned mice than in R6/2 mice. Although the 
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mechanisms responsible for the beneficial effects of CBG in HD were not further interrogated, it 

was ruled out that they could engage CB1 and/or CB2, given the poor affinity of CBG for both 

receptors [115].  

 In conclusion, pharmacological activation of CB2 might represent a frontier that needs to 

be explored to develop novel drugs able to counteract motor and neurological deterioration in HD. 

7. Concluding remarks 

Traditionally, the neuroprotective effects of cannabinoid-based drugs have been attributed to 

stimulation of CB1, the most abundant GPCR in the brain. Instead for decades CB2, the non-

psychotropic cannabinoid receptor, has been associated almost exclusively to immunomodulatory 

effects. This view is rapidly changing after the recent discovery of the functional expression of 

CB2 also in non-immune cells of the brain, such as neurons and endothelial cells, under 

physiological and most often pathological conditions. Here, we have discussed recent studies on 

the pathophysiological relevance of CB2 signaling in the context of different neurodegenerative 

disorders, including brain and spinal neurotrauma, AD, PD and HD. These studies support the 

intriguing possibility that CB2 may be part of a protective mechanism that is both acutely and 

chronically expressed and/or activated upon brain damage, and operates at once and at multiple 

levels to orchestrate a series of pro-homeostatic responses. However, the widespread expression of 

CB2 and the complexity of its signal transduction pathways make it extremely difficult to decipher 

its distinct role in pathogenic events related to neurodegeneration. Future research is deemed 

necessary to identify the precise mechanisms triggered by CB2 in order to regulate key pro-

homeostatic pathways in the brain. In addition, since both CB1 and CB2 seem to co-exist in the 

same cell, further research is also required to elucidate what type of interaction exists between 

these two receptor subtypes, and what is its physiological and pharmacological relevance. 

Unsurprisingly, as yet only a few clinical data exist on the potential therapeutic exploitation of 
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CB2 in neurodegeneration, though it can be anticipated that targeting it to reduce 

neuroinflammation and blood-brain barrier disruption, while promoting neurosurvival and 

neurogenesis, is likely to be of particular interest in treating neurodegenerative disorders. An 

added value of this potential therapeutic strategy appears the reduced risk of psychoactive effects 

associated with CB2 manipulation. 
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Legend to Figures 

Figure 1.  Chemical structures of the major endocannabinoids. AEA, N-

arachidonoylethanolamine; 2-AG, 2-arachidonoylglycerol. 

Figure 2. Schematic representation of CB2 impact on axotomy-induced neurodegeneration. 

Axonal injury leads to a de novo synthesis of CB2 in damaged neurons, as well as to activation of 

glial cells which produce nitric oxide (NO) via induction of inducible nitric oxide synthase 

(iNOS). Released NO readily diffuses to neurons, where it reacts with reactive oxygen species 

(ROS) produced from dysfunctional mitochondria, thus forming the more reactive oxidant 

peroxynitrite (ONOO−). The latter eventually triggers mitochondrial and other cell death 

pathways. CB2 stimulation decreases axonal injury by attenuating glial cell activation, as well as 

by promoting neuronal nitric oxide synthase (nNOS)-dependent protective mechanisms, via Akt-

dependent signals that include expression of antioxidant (Hsp70) and antiapoptotic (Bcl-2) 

systems. 

Figure 3. Chemical structures of pharmacologically active plant-derived (phyto-) 

cannabinoids. THC, Δ
9
-tetrahydrocannabinol; CBG, cannabigerol; CBD, cannabidiol; THCV, Δ

9
-

tetrahydrocannabivarin. 

 

Legend to Tables 

Table 1. Ki values of CB2 agonists and their doses in preclinical studies. 

Table 2. Potential therapeutic use of CB2 in SCI and TBI. 

Table 3. Potential therapeutic use of CB2 in AD, PD and HD. 
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Table 1. Ki values of CB2 agonists and their doses in preclinical studies. 

Compound 
Ki for CB2 

(nM) 

Ki for CB1 

(nM) 
Dose rate Reference 

 

 

13.8 383 

 

10-6-10-8 M 

 

 

5 mg/Kg 

 

 

3 mg/Kg 

 

 

[66] 

 

 

[66] 

 

 

[10, 56] 

 

 

 

 

3.4 677 

 

1 mg/Kg 

 

100 nM 

 

0.2 mg/Kg 

 

200 nM 

 

 

[57] 

 

[63] 

 

[68] 

 

[74] 

 

 

 

22.7 >10000 

 

 

 

 

 

5 mg/Kg 

 

 

 

 

 

 

 

[92, 106-107] 

 

 

 

 

 

 

23 5055 5 mg/Kg 

 

 

 

 

 

[54, 57] 

 

 

 

 

 

 

 

 

 

 

 

422 

 

 

 

 

>10000 

 

 

 

 

15 mg/Kg 

 

 

 

 

[75] 

 

 



34 

 

Table 2. Potential therapeutic use of CB2 in SCI and TBI. 

Condition Model Change 

CB2 

manipulation 

Effect Reference 

SCI 

Spinal cord 

contusion 

(mice) 

↑ in activated microglia O-1966 

Improvement in motor 

function 

[54] 

 

Attenuation of 

neuroinflammation 

[52] 

 

Increase of autonomic 

function recovery 

[53] 

 

     

Spinal cord 

moderate 

contusion 

(rats) 

nd 2-AG 

Reduction of lesion 

expansion  

[116] 

 

Preservation of white 

matter 

[116] 

    

↑ in immune infiltrates 

and astrocytes 

AM630 

Impairment of 

spontaneous locomotor 

recovery [55] 

Worsening of secondary 

damage 

     Sciatic 

nerve 

section 

(rats) 

↑ in damaged neurons 

 

[46] 

     

Spinal cord 

dorsal 

hemisection 

(rats) 

↑ in axotomized neurons JWH-015 

Attenuation of atrophy 

and neurodegeneration; 

Improvement in 

functional recovery; 

Attenuation of 

neuroinflammation 

[56] 
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SR144528 

Reversion of  CB2  

agonist-mediated 

protective effects  

TBI 

CCI 

↑ in activated microglia O-1966 

Attenuation of 

neuroinflammation 

[48] 

Reduction of cerebral 

edema 

[14] 

Attenuation of blood-

brain barrier disruption; 

[57] 

Attenuation of neuronal 

degeneration 

    

 

PF3845 

Improvement in motor 

function, working 

memory and anxiety 

behavior 

[50] 

Attenuation of 

neuroinflammation 

Attenuation of 

neurodegeneration 

  

SR144528 

Reversion of PF3845-

mediated protective 

effects 

  
   

Craniotomy nd 

O-1966 

Reduced 

neuroinflammation 

[14] 

JWH-133 

Improvement of 

cerebral infarction 

  CB2-/- Worsened inflammation 

  

SR144528 

Reversion of  CB2 

agonist-mediated 

protective effects  
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Agonists: JWH-015, JWH-133, O-1966, 2-AG; antagonists: AM630, SR144528; FAAH inhibitor: PF3845. nd, not 

determined. 

 

Weight-

drop 

nd AM630 

Prevention of protective 

actions of minocycline 

[51] 

     

Hemicerebe

llectomy 

↑ in axotomized neurons 

JWH-015 

Attenuation of 

neurodegeneration 

[10, 29] 

Improvement in motor 

function and behavior 

Attenuation of 

microgliosis 

Attenuation of 

oxidative/nitrosative 

damage 

  

SR144528 

Reversion of  CB2 

agonist-mediated 

protective effects  
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Table 3. Potential therapeutic use of CB2 in AD, PD and HD. 

Condition Model Change 

CB2 

manipulation 

Effect Reference 

AD 

Aβ neurotoxicity in vitro 

Mouse microglial 

cells 

↑ in activated 

microglia 

JWH-133 

Reduction of Aβ-induced 

microglia activation 

[63, 74] 

     Human 

neuroblastoma 

cells 

 

2-AG 

Reduction of Aβ mediated 

neurotoxicity 

[117] 

     
Aβ neurotoxicity in vivo 

Rats 

↑ in activated 

microglia 

MDA7 

Attenuation of 

neuroinflammation 

[75] 

Reduction of pro-inflammatory 

cytokine production 

Promotion of Aβ clearance 

Improvement in synaptic 

plasticity, cognition, and 

memory 

    

↑ in astrocytes 
JWH-015 Increase of astrogliosis 

[66] 

SR144528 Reduction of astrogliosis 

    
↑ in 

hippocampus 

  

[65] 
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Mice 

↑ in activated 

microglia 

WIN 55,212-2 

Reduction of pro-inflammatory 

cytokine production 

[63, 74] 

    
 

Transgenic mice 

Tg2576 ↔ in brain JWH-133 

Reduction of Aβ production 

[55] 

Reduction of microgliosis 

Improvement in cognitive 

performance 

    
 

APPSwe/PS1ΔE9 

↑ in cortex JWH-133 

Improvement in learning and 

memory performance [68] 

Reduction of neuroinflammation 

    

 

CB2-/- 

Impairment in immune cell 

recruitment in amyloid plaques 

[78] 

Reduction of pro-inflammatory 

cytokine production 

Reduction of soluble Aβ 40/42 

levels 

    
 

J20APP   CB2-/- Increase of Aβ production [77] 

PD 

MPTP-treated 

mice 

↑ in the 

ventral 

midbrain 

WIN55,212-2, 

JWH015 

Reduced MPTP-induced 

microglial activation 

[89] 
WIN55,212-2 

Reversed MPTP-associated 

motor deficits 

CB2-/- Exacerbated MPTP toxicity  

    
 

LPS-treated mice 

↑ in the 

substantia 

nigra  

HU-308 

Protected TH positive neurons [92] 

↑ in the 

striatum  
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CB2-/- 

Exacerbated LPS lesions 
[98] 

Protected TH positive neurons 

and reduces LPS-induced 

proinflammatory responses 

[92, 98] 

 

Exacerbated LPS lesions and 

inflammation 

[93] 

     

LPS-treated rats 

↑ in the 

striatum  

  

[98] 

     6-OHDA-treated 

rats 

↑ in the 

striatum    

  

 

HD 

Malonate-treated 

mice 

↑ in the 

striatum  

HU-308 Reduced striatal lesions 

[106] 

 

SR144528 

Reverted HU-308 protective 

actions  

 

CB2-/- Exacerbated malonate lesions 

  
   

R6/2 transgenic 

mice 

↑ in the 

striatum at 

pre-

symptomatic 

and 

symptomatic 

stage 

HU-308 

Reduced brain oedema and 

microglial activation induced by 

quinolinic acid 

[107] 
 

 

CB2-/- 

Enhanced microglial activation 

and exacerbated motor 

symptoms 

  
   

BACHD mice   

  

Accelerated disease onset and 

exacerbated severity 

[108] 

Agonists: JWH-015, JWH-133, O-1966, 2-AG, WIN55,212-2, HU-308, MDA7; antagonist: SR144528. 
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