Dense fully stabilized cubic zirconia, sintered by the spark plasma sintering (SPS) method, was characterized through hardness, fracture toughness, and electrical impedance measurements. The effect of sintering temperature on hardness and fracture toughness was evaluated. Samples sintered at 1200 °C for 5 min, which had crystallite size of <100 nm, exhibited the highest hardness. Impedance measurements showed an increase in bulk contribution relative to grain boundaries as sintering temperature is increased. Calculation of the activation energy for conduction gave a value, 1.13 eV, in agreement with previously published results.

Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part II. Characterization studies

Chiodelli G;
2004

Abstract

Dense fully stabilized cubic zirconia, sintered by the spark plasma sintering (SPS) method, was characterized through hardness, fracture toughness, and electrical impedance measurements. The effect of sintering temperature on hardness and fracture toughness was evaluated. Samples sintered at 1200 °C for 5 min, which had crystallite size of <100 nm, exhibited the highest hardness. Impedance measurements showed an increase in bulk contribution relative to grain boundaries as sintering temperature is increased. Calculation of the activation energy for conduction gave a value, 1.13 eV, in agreement with previously published results.
2004
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Spark Plasma Sintering
SPS
YSZ
nanostruttura
SOFC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/21767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact