In the first part of the present contribution, we will report on transport calculations of nanoscaled devices based on Carbon Nanotubes obtained via self-consistent density-functional method coupled with non-equilibrium Greens function approaches. In particular, density functional tight-binding techniques are very promising due to their intrinsic efficiency. This scheme allows treatment of systems comprising a large number of atoms and enables the computation of the current flowing between two or more contacts in a fully self-consistent manner with the open boundary conditions that naturally arise in transport problems. We will give a description of this methodology and application to field effect transistor based on Carbon nanotubes. The advances in manufacturing technology are allowing new opportunities even for vacuum electron devices producing radio-frequency radiation. Modem micro and nano-technologies can overcome the typical severe limitations of vacuum tube devices. As an example, Carbon Nanotubes used as cold emitters in micron-scaled triodes allow for frequency generation up to THz region. The purpose of the second part of this contribution will be a description of the modelling of Carbon Nanotube based vacuum devices such as triodes. We will present the calculation of important figures of merit and possible realizations.

Modelling of carbon nanotube-based devices: from nanoFETs to THz emitters

Pecchia;Alessandro;
2006

Abstract

In the first part of the present contribution, we will report on transport calculations of nanoscaled devices based on Carbon Nanotubes obtained via self-consistent density-functional method coupled with non-equilibrium Greens function approaches. In particular, density functional tight-binding techniques are very promising due to their intrinsic efficiency. This scheme allows treatment of systems comprising a large number of atoms and enables the computation of the current flowing between two or more contacts in a fully self-consistent manner with the open boundary conditions that naturally arise in transport problems. We will give a description of this methodology and application to field effect transistor based on Carbon nanotubes. The advances in manufacturing technology are allowing new opportunities even for vacuum electron devices producing radio-frequency radiation. Modem micro and nano-technologies can overcome the typical severe limitations of vacuum tube devices. As an example, Carbon Nanotubes used as cold emitters in micron-scaled triodes allow for frequency generation up to THz region. The purpose of the second part of this contribution will be a description of the modelling of Carbon Nanotube based vacuum devices such as triodes. We will present the calculation of important figures of merit and possible realizations.
2006
0-8194-6407-4
Carbon nanotubes
non-equilibrium Green functions
density functional theory
quantum transport
THz
PIC
NONEQUILIBRIUM PROCESSES
COMPLEX MATERIALS
FIELD EMITTERS
TRANSISTORS
SIMULATIONS
CAPACITANCE
EMISSION
DENSITY
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/202158
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
social impact