Articolo in rivista, 2014, ENG, 10.1103/PhysRevE.90.022811
Matteo di Volo (1,2,3); Raffaella Burioni (1,3); Mario Casartelli (1,3); Roberto Livi (2,4,5,6); Alessandro Vezzani (1,7)
(1) Dipartimento di Fisica e Scienza della Terra, Università di Parma, via G.P. Usberti, 7/A-43124, Parma, Italy (2) Centro Interdipartimentale per lo Studio delle Dinamiche Complesse, via Sansone, 1-50019 Sesto Fiorentino, Italy (3) INFN, Gruppo Collegato di Parma, via G.P. Usberti, 7/A-43124, Parma, Italy (4) Dipartimento di Fisica, Università di Firenze, via Sansone, 1-50019 Sesto Fiorentino, Italy (5) Istituto dei Sistemi Complessi, CNR, via Madonna del Piano 10-50019 Sesto Fiorentino, Italy (6) INFN Sez. Firenze, via Sansone, 1-50019 Sesto Fiorentino, Italy (7) S3, CNR Istituto di Nanoscienze, Via Campi, 213A-41125 Modena, Italy
We report about the main dynamical features of a model of leaky integrate-and-fire excitatory neurons with short-term plasticity defined on random massive networks. We investigate the dynamics by use of a heterogeneous mean-field formulation of the model that is able to reproduce dynamical phases characterized by the presence of quasisynchronous events. This formulation allows one to solve also the inverse problem of reconstructing the in-degree distribution for different network topologies from the knowledge of the global activity field. We study the robustness of this inversion procedure by providing numerical evidence that the in-degree distribution can be recovered also in the presence of noise and disorder in the external currents. Finally, we discuss the validity of the heterogeneous mean-field approach for sparse networks with a sufficiently large average in-degree.
Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics 90 (2), pp. 2811–2811
neural networks, short-term plasticity
Livi Roberto, Vezzani Alessandro
ISC – Istituto dei sistemi complessi, NANO – Istituto Nanoscienze
ID: 284263
Year: 2014
Type: Articolo in rivista
Creation: 2014-09-23 15:39:47.000
Last update: 2016-02-12 15:02:09.000
CNR authors
External links
OAI-PMH: Dublin Core
OAI-PMH: Mods
OAI-PMH: RDF
DOI: 10.1103/PhysRevE.90.022811
URL: http://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.022811
External IDs
CNR OAI-PMH: oai:it.cnr:prodotti:284263
DOI: 10.1103/PhysRevE.90.022811
ISI Web of Science (WOS): 000341269500008
Scopus: 2-s2.0-84908445403