Articolo in rivista, 2014, ENG, 10.1103/PhysRevE.90.022811

Heterogeneous mean field for neural networks with short-term plasticity

Matteo di Volo (1,2,3); Raffaella Burioni (1,3); Mario Casartelli (1,3); Roberto Livi (2,4,5,6); Alessandro Vezzani (1,7)

(1) Dipartimento di Fisica e Scienza della Terra, Università di Parma, via G.P. Usberti, 7/A-43124, Parma, Italy (2) Centro Interdipartimentale per lo Studio delle Dinamiche Complesse, via Sansone, 1-50019 Sesto Fiorentino, Italy (3) INFN, Gruppo Collegato di Parma, via G.P. Usberti, 7/A-43124, Parma, Italy (4) Dipartimento di Fisica, Università di Firenze, via Sansone, 1-50019 Sesto Fiorentino, Italy (5) Istituto dei Sistemi Complessi, CNR, via Madonna del Piano 10-50019 Sesto Fiorentino, Italy (6) INFN Sez. Firenze, via Sansone, 1-50019 Sesto Fiorentino, Italy (7) S3, CNR Istituto di Nanoscienze, Via Campi, 213A-41125 Modena, Italy

We report about the main dynamical features of a model of leaky integrate-and-fire excitatory neurons with short-term plasticity defined on random massive networks. We investigate the dynamics by use of a heterogeneous mean-field formulation of the model that is able to reproduce dynamical phases characterized by the presence of quasisynchronous events. This formulation allows one to solve also the inverse problem of reconstructing the in-degree distribution for different network topologies from the knowledge of the global activity field. We study the robustness of this inversion procedure by providing numerical evidence that the in-degree distribution can be recovered also in the presence of noise and disorder in the external currents. Finally, we discuss the validity of the heterogeneous mean-field approach for sparse networks with a sufficiently large average in-degree.

Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics 90 (2), pp. 2811–2811

Keywords

neural networks, short-term plasticity

CNR authors

Livi Roberto, Vezzani Alessandro

CNR institutes

ISC – Istituto dei sistemi complessi, NANO – Istituto Nanoscienze

ID: 284263

Year: 2014

Type: Articolo in rivista

Creation: 2014-09-23 15:39:47.000

Last update: 2016-02-12 15:02:09.000

External IDs

CNR OAI-PMH: oai:it.cnr:prodotti:284263

DOI: 10.1103/PhysRevE.90.022811

ISI Web of Science (WOS): 000341269500008

Scopus: 2-s2.0-84908445403