We study the estimation problem of linear regression in the presence of a new impulsive noise model, which is a sum of Cauchy and Gaussian random variables in time domain. The probability density function (PDF) of this mixture noise, referred to as the Voigt profile, is derived from the convolution of the Cauchy and Gaussian PDFs. To determine the linear regression parameters, the maximum likelihood estimator (MLE) is developed first. Since the Voigt profile suffers from a complicated analytical form, an M-estimator with the pseudo-Voigt function is also derived. In our algorithm development, both scenarios of known and unknown density parameters are considered. For the latter case, we estimate the density parameters by utilizing the empirical characteristic function prior to applying the MLE. Simulation results show that the performance of both proposed methods can attain the Cramér-Rao lower bound. © 2014 Elsevier B.V.

Optimum linear regression in additive Cauchy-Gaussian noise

Kuruoglu EE;
2015

Abstract

We study the estimation problem of linear regression in the presence of a new impulsive noise model, which is a sum of Cauchy and Gaussian random variables in time domain. The probability density function (PDF) of this mixture noise, referred to as the Voigt profile, is derived from the convolution of the Cauchy and Gaussian PDFs. To determine the linear regression parameters, the maximum likelihood estimator (MLE) is developed first. Since the Voigt profile suffers from a complicated analytical form, an M-estimator with the pseudo-Voigt function is also derived. In our algorithm development, both scenarios of known and unknown density parameters are considered. For the latter case, we estimate the density parameters by utilizing the empirical characteristic function prior to applying the MLE. Simulation results show that the performance of both proposed methods can attain the Cramér-Rao lower bound. © 2014 Elsevier B.V.
2015
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Cauchy distribution
Gaussian distribution
Impulsive noise
File in questo prodotto:
File Dimensione Formato  
prod_295344-doc_84862.pdf

solo utenti autorizzati

Descrizione: Optimum linear regression in additive Cauchy-Gaussian noise
Tipologia: Versione Editoriale (PDF)
Dimensione 414.99 kB
Formato Adobe PDF
414.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_295344-doc_166314.pdf

accesso aperto

Descrizione: Preprint - Optimum linear regression in additive Cauchy-Gaussian noise
Tipologia: Versione Editoriale (PDF)
Dimensione 309.9 kB
Formato Adobe PDF
309.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/258255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact