We consider a family of mixed finite element discretizations of the Darcy flow equations using totally discontinuous elements ( both for the pressure and the flux variable). Instead of using a jump stabilization as it is usually done for discontinuos Galerkin (DG) methods ( see e. g. D. N. Arnold et al. SIAM J. Numer. Anal. 39, 1749 - 1779 ( 2002) and B. Cockburn, G. E. Karniadakis and C.-W. Shu, DG methods: Theory, computation and applications, ( Springer, Berlin, 2000) and the references therein) we use the stabilization introduced in A. Masud and T. J. R. Hughes, Meth. Appl. Mech. Eng. 191, 4341 - 4370 ( 2002) and T. J. R. Hughes, A. Masud, and J. Wan, ( in preparation). We show that such stabilization works for discontinuous elements as well, provided both the pressure and the flux are approximated by local polynomials of degree >= 1, without any need for additional jump terms. Surprisingly enough, after the elimination of the flux variable, the stabilization of A. Masud and T. J. R. Hughes, Meth. Appl. Mech. Eng. 191, 4341 - 4370 ( 2002) and T. J. R. Hughes, A. Masud, and J. Wan, ( in preparation) turns out to be in some cases a sort of jump stabilization itself, and in other cases a stable combination of two originally unstable DG methods ( namely, Bassi-Rebay F. Bassi and S. Rebay, Proceedings of the Conference "Numerical methods for fluid dynamics V", Clarendon Press, Oxford 1995) and Baumann - Oden Comput. Meth. Appl. Mech. Eng. 175, 311 341 ( 1999).

Mixed discontinuous Galerkin methods for Darcy flow

Brezzi F;
2005

Abstract

We consider a family of mixed finite element discretizations of the Darcy flow equations using totally discontinuous elements ( both for the pressure and the flux variable). Instead of using a jump stabilization as it is usually done for discontinuos Galerkin (DG) methods ( see e. g. D. N. Arnold et al. SIAM J. Numer. Anal. 39, 1749 - 1779 ( 2002) and B. Cockburn, G. E. Karniadakis and C.-W. Shu, DG methods: Theory, computation and applications, ( Springer, Berlin, 2000) and the references therein) we use the stabilization introduced in A. Masud and T. J. R. Hughes, Meth. Appl. Mech. Eng. 191, 4341 - 4370 ( 2002) and T. J. R. Hughes, A. Masud, and J. Wan, ( in preparation). We show that such stabilization works for discontinuous elements as well, provided both the pressure and the flux are approximated by local polynomials of degree >= 1, without any need for additional jump terms. Surprisingly enough, after the elimination of the flux variable, the stabilization of A. Masud and T. J. R. Hughes, Meth. Appl. Mech. Eng. 191, 4341 - 4370 ( 2002) and T. J. R. Hughes, A. Masud, and J. Wan, ( in preparation) turns out to be in some cases a sort of jump stabilization itself, and in other cases a stable combination of two originally unstable DG methods ( namely, Bassi-Rebay F. Bassi and S. Rebay, Proceedings of the Conference "Numerical methods for fluid dynamics V", Clarendon Press, Oxford 1995) and Baumann - Oden Comput. Meth. Appl. Mech. Eng. 175, 311 341 ( 1999).
2005
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Mixed FEM
Discontinuous Galerkin
File in questo prodotto:
File Dimensione Formato  
prod_31046-doc_20182.pdf

solo utenti autorizzati

Descrizione: Articolo pubblicato
Dimensione 195.13 kB
Formato Adobe PDF
195.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/51530
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 89
social impact