The convergence property of the discrete Laplace-Beltrami operators is the foundation of convergence analysis of the numerical simulation process of some geometric partial differential equations which involve the operator. In this paper we propose several simple discretization schemes of Laplace-Beltrami operators over triangulated surfaces. Convergence results for these discrete Laplace-Beltrami operators are established under various conditions. Numerical results that support the theoretical analysis are given. Application examples of the proposed discrete Laplace-Beltrami operators in surface processing and modelling are also presented.

Discrete Laplace-Beltrami Operators for Shape Analysis and Segmentation

S Biasotti;D Giorgi;M Spagnuolo
2009

Abstract

The convergence property of the discrete Laplace-Beltrami operators is the foundation of convergence analysis of the numerical simulation process of some geometric partial differential equations which involve the operator. In this paper we propose several simple discretization schemes of Laplace-Beltrami operators over triangulated surfaces. Convergence results for these discrete Laplace-Beltrami operators are established under various conditions. Numerical results that support the theoretical analysis are given. Application examples of the proposed discrete Laplace-Beltrami operators in surface processing and modelling are also presented.
2009
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Laplace-Beltrami operator
Surface triangulation
Discretization
Convergence
File in questo prodotto:
File Dimensione Formato  
prod_31416-doc_14042.pdf

solo utenti autorizzati

Descrizione: Articolo_pubblicato_rivistaC&G_2009
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_31416-doc_30782.pdf

solo utenti autorizzati

Descrizione: Prefazione_rivista_special_issue
Dimensione 133.7 kB
Formato Adobe PDF
133.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/40715
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 241
  • ???jsp.display-item.citation.isi??? 198
social impact