Bipolar resistive switching memories based on metal oxides offer a great potential in terms of simple process integration, memory performance, and scalability. In view of ultrahigh density memory applications, a reduced device size is not the only requirement, as the distance between different devices is a key parameter. By exploiting a bottom-up fabrication approach based on block copolymer self-assembling, we obtained the parallel production of bilayer Pt/Ti top electrodes arranged in periodic arrays over the HfO2/TiN surface, building memory devices with a diameter of 28 nm and a density of 5 × 1010 devices/cm2. For an electrical characterization, the sharp conducting tip of an atomic force microscope was adopted for a selective addressing of the nanodevices. The presence of devices showing high conductance in the initial state was directly connected with scattered leakage current paths in the bare oxide film, while with bipolar voltage operations we obtained reversible set/reset transitions irrespective of the conductance variability in the initial state. Finally, we disclosed a scalability limit for ultrahigh density memory arrays based on continuous HfO2 thin films, in which a cross-talk between distinct nanodevices can occur during both set and reset transitions.

Resistive Switching in High-Density Nanodevices Fabricated by Block Copolymer Self-Assembly

Frascaroli J;Brivio S;Ferrarese Lupi F;Seguini G;Perego M;Spiga S
2015

Abstract

Bipolar resistive switching memories based on metal oxides offer a great potential in terms of simple process integration, memory performance, and scalability. In view of ultrahigh density memory applications, a reduced device size is not the only requirement, as the distance between different devices is a key parameter. By exploiting a bottom-up fabrication approach based on block copolymer self-assembling, we obtained the parallel production of bilayer Pt/Ti top electrodes arranged in periodic arrays over the HfO2/TiN surface, building memory devices with a diameter of 28 nm and a density of 5 × 1010 devices/cm2. For an electrical characterization, the sharp conducting tip of an atomic force microscope was adopted for a selective addressing of the nanodevices. The presence of devices showing high conductance in the initial state was directly connected with scattered leakage current paths in the bare oxide film, while with bipolar voltage operations we obtained reversible set/reset transitions irrespective of the conductance variability in the initial state. Finally, we disclosed a scalability limit for ultrahigh density memory arrays based on continuous HfO2 thin films, in which a cross-talk between distinct nanodevices can occur during both set and reset transitions.
2015
Istituto per la Microelettronica e Microsistemi - IMM
resistive switching
ReRAM
high density
HfO2
bottom-up fabrication
block copolymer
self-assembly
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/291230
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 68
social impact