In the present paper we construct virtual element spaces that are (Formula presented.)-conforming and (Formula presented.)-conforming on general polygonal and polyhedral elements; these spaces can be interpreted as a generalization of well known finite elements. We moreover present the basic tools needed to make use of these spaces in the approximation of partial differential equations. Finally, we discuss the construction of exact sequences of VEM spaces.
H(div) and H(curl)-conforming virtual element methods
L Beirao da Veiga;F Brezzi;LD Marini;A Russo
2016
Abstract
In the present paper we construct virtual element spaces that are (Formula presented.)-conforming and (Formula presented.)-conforming on general polygonal and polyhedral elements; these spaces can be interpreted as a generalization of well known finite elements. We moreover present the basic tools needed to make use of these spaces in the approximation of partial differential equations. Finally, we discuss the construction of exact sequences of VEM spaces.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_347392-doc_153055.pdf
accesso aperto
Descrizione: H(div) and H(curl)-conforming virtual element methods
Tipologia:
Versione Editoriale (PDF)
Dimensione
317.48 kB
Formato
Adobe PDF
|
317.48 kB | Adobe PDF | Visualizza/Apri |
prod_347392-doc_153056.pdf
solo utenti autorizzati
Descrizione: H(div) and H(curl)-conforming virtual element methods
Tipologia:
Versione Editoriale (PDF)
Dimensione
538.69 kB
Formato
Adobe PDF
|
538.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.