Phenolic acids are major components of cell walls in wheat and have important implications on human health as antioxidants with anti-tumor activity. Our objectives were to identify phenolic acid genes in wheat by single nucleotide polymorphisms (SNPs) detected within the coding sequences of candidate genes, and to identify chromosomal regions associated with single phenolic acids and total soluble phenolic compounds. A set of candidate genes involved in the biosynthesis of hydroxycinnamic acid derivatives were identified by comparative genomics. SNPs found in the coding sequences of six genes (PAL1, PAL2, C4H, C3H, COMT1 and COMT2) were used to determine their chromosomal location and accurate map position on two reference consensus linkage maps. The genome-wide association study (GWAS), based on genotyping a tetraploid wheat collection with 81,587 gene-associated SNPs, detected 22 quantitative trait loci (QTL) distributed on almost all durum wheat chromosomes. Two QTL for p-coumaric acid were coincident with the phenylalanine ammonia-lyase (PAL2) and p-coumarate 3-hydroxylase (C3H) genes on chromosome arms 2AL and 1AL, respectively. The availability of candidate gene-based markers can allow elucidating the mechanism of phenolic acids accumulation in wheat kernels and exploiting the genetic variability of phenolic acids content for the nutritional improvement of wheat end-products.

Genome-wide association mapping of phenolic acids in tetraploid wheats

Barbara Laddomada;Giovanni Mita;Emanuela Blanco;
2017

Abstract

Phenolic acids are major components of cell walls in wheat and have important implications on human health as antioxidants with anti-tumor activity. Our objectives were to identify phenolic acid genes in wheat by single nucleotide polymorphisms (SNPs) detected within the coding sequences of candidate genes, and to identify chromosomal regions associated with single phenolic acids and total soluble phenolic compounds. A set of candidate genes involved in the biosynthesis of hydroxycinnamic acid derivatives were identified by comparative genomics. SNPs found in the coding sequences of six genes (PAL1, PAL2, C4H, C3H, COMT1 and COMT2) were used to determine their chromosomal location and accurate map position on two reference consensus linkage maps. The genome-wide association study (GWAS), based on genotyping a tetraploid wheat collection with 81,587 gene-associated SNPs, detected 22 quantitative trait loci (QTL) distributed on almost all durum wheat chromosomes. Two QTL for p-coumaric acid were coincident with the phenylalanine ammonia-lyase (PAL2) and p-coumarate 3-hydroxylase (C3H) genes on chromosome arms 2AL and 1AL, respectively. The availability of candidate gene-based markers can allow elucidating the mechanism of phenolic acids accumulation in wheat kernels and exploiting the genetic variability of phenolic acids content for the nutritional improvement of wheat end-products.
2017
Istituto di Bioscienze e Biorisorse
Istituto di Scienze delle Produzioni Alimentari - ISPA
GWAS
Phenylpropanoid pathway
SNPs
Phenolic acids genes
Wheat
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/329906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact