In this article we introduce a new mixed Lagrange-Hermite interpolating wavelet family on the interval, to deal with two types (Dirichlet and Neumann) of boundary conditions. As this construction is a slight modification of the interpolating wavelets on the interval of Donoho, it leads to fast decomposition, error estimates and norm equivalences. This new basis is then used in adaptive wavelet collocation schemes for the solution of one dimensional fourth order problems. Numerical tests conducted on the 1D Euler-Bernoulli beam problem, show the efficiency of the method.

A new construction of boundary interpolating wavelets for fourth order problems

S Bertoluzza;
2017

Abstract

In this article we introduce a new mixed Lagrange-Hermite interpolating wavelet family on the interval, to deal with two types (Dirichlet and Neumann) of boundary conditions. As this construction is a slight modification of the interpolating wavelets on the interval of Donoho, it leads to fast decomposition, error estimates and norm equivalences. This new basis is then used in adaptive wavelet collocation schemes for the solution of one dimensional fourth order problems. Numerical tests conducted on the 1D Euler-Bernoulli beam problem, show the efficiency of the method.
2017
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Fourth order problems
Interpolating wavelets
Wavelet collocation
File in questo prodotto:
File Dimensione Formato  
prod_376143-doc_130158.pdf

non disponibili

Descrizione: A new construction of boundary interpolating wavelets for fourth order problems
Tipologia: Versione Editoriale (PDF)
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_376143-doc_151196.pdf

accesso aperto

Descrizione: A new construction of boundary interpolating wavelets for fourth order problems
Tipologia: Versione Editoriale (PDF)
Dimensione 5.37 MB
Formato Adobe PDF
5.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/337203
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact