We build and analyze balancing domain decomposition by constraint and finite element tearing and interconnecting dual primal preconditioners for elliptic problems discretized by the virtual element method. We prove polylogarithmic condition number bounds, independent of the number of subdomains, the mesh size, and jumps in the diffusion coefficients. Numerical experiments confirm the theory.
BDDC and FETI-DP for the virtual element method
S Bertoluzza;M Pennacchio;D Prada
2017
Abstract
We build and analyze balancing domain decomposition by constraint and finite element tearing and interconnecting dual primal preconditioners for elliptic problems discretized by the virtual element method. We prove polylogarithmic condition number bounds, independent of the number of subdomains, the mesh size, and jumps in the diffusion coefficients. Numerical experiments confirm the theory.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_378132-doc_130159.pdf
solo utenti autorizzati
Descrizione: BDDC and FETI-DP for the virtual element method
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.31 MB
Formato
Adobe PDF
|
1.31 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
prod_378132-doc_170867.pdf
accesso aperto
Descrizione: BDDC and FETI-DP for the virtual element method
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.