We build and analyze balancing domain decomposition by constraint and finite element tearing and interconnecting dual primal preconditioners for elliptic problems discretized by the virtual element method. We prove polylogarithmic condition number bounds, independent of the number of subdomains, the mesh size, and jumps in the diffusion coefficients. Numerical experiments confirm the theory.

BDDC and FETI-DP for the virtual element method

S Bertoluzza;M Pennacchio;D Prada
2017

Abstract

We build and analyze balancing domain decomposition by constraint and finite element tearing and interconnecting dual primal preconditioners for elliptic problems discretized by the virtual element method. We prove polylogarithmic condition number bounds, independent of the number of subdomains, the mesh size, and jumps in the diffusion coefficients. Numerical experiments confirm the theory.
2017
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Virtual element method
Domain decomposition methods
Substructuring preconditioners
File in questo prodotto:
File Dimensione Formato  
prod_378132-doc_130159.pdf

solo utenti autorizzati

Descrizione: BDDC and FETI-DP for the virtual element method
Tipologia: Versione Editoriale (PDF)
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_378132-doc_170867.pdf

accesso aperto

Descrizione: BDDC and FETI-DP for the virtual element method
Tipologia: Versione Editoriale (PDF)
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/326543
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 28
social impact