In this paper, we report on a data analysis process for the automated classification of mechanical components. In particular, here, we describe, how to implement a machine learning system for the automated classification of parts belonging to several sub-categories. We collect models that are typically used in the mechanical industry, and then we represent each object by a collection of features. We illustrate how to set-up a supervised multi-layer artificial neural network with an ad-hoc classification schema. We test our solution on a dataset formed by 2354 elements described by 875 features and spanned among 15 sub-categories. We state the accuracy of classification in terms of average area under ROC curves and the ability to classify 606 unknown 3D objects by similarity coefficients. Our parts' classification system outperforms a classifier based on the Light Field Descriptor, which, as far as we know, actually represents the gold standard for the identification of most types of 3D mechanical objects.
A methodology for part classification with supervised machine learning
M Rucco;F Giannini;K Lupinetti;M Monti
2018
Abstract
In this paper, we report on a data analysis process for the automated classification of mechanical components. In particular, here, we describe, how to implement a machine learning system for the automated classification of parts belonging to several sub-categories. We collect models that are typically used in the mechanical industry, and then we represent each object by a collection of features. We illustrate how to set-up a supervised multi-layer artificial neural network with an ad-hoc classification schema. We test our solution on a dataset formed by 2354 elements described by 875 features and spanned among 15 sub-categories. We state the accuracy of classification in terms of average area under ROC curves and the ability to classify 606 unknown 3D objects by similarity coefficients. Our parts' classification system outperforms a classifier based on the Light Field Descriptor, which, as far as we know, actually represents the gold standard for the identification of most types of 3D mechanical objects.File | Dimensione | Formato | |
---|---|---|---|
prod_390725-doc_134854.pdf
solo utenti autorizzati
Descrizione: A methodology for part classification with supervised machine learning
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.