The main mission of the Divertor Test Tokamak (DTT) is to explore viable solutions to the power exhaust issues in a fusion reactor. The ultimate goal will be to qualify and control in various divertor configurations DEMO relevant heat flux densities to the wall while preserving the integrity of both the plasma facing components and the plasma performance. Experiments will involve tailored magnetic topologies, highly radiative regimes and advanced materials. In this contribution, we describe the package of diagnostic systems that will be deployed to allow DTT accomplishing its tasks. Diagnostics and feedback control are particularly functional to the need of maintaining the plasma close to equilibrium in situations prone to instabilities where the plasma wall interaction is optimized. Focusing on the divertor diagnostics, a particular effort will consist in obtaining space resolved measurements of density, temperature, impurity densities and ionization front that can be compared with the 2D results of model simulations. This will be possible using mainly optical diagnostics based on filtered cameras and spectrometers deployed in imaging mode, complemented by local measurements obtained by a space resolved Thomson scattering, Langmuir probes and gas puffing imaging systems. Diagnostics of the main plasma will assure a full qualification of the core and of the pedestal in terms of thermal contents, equilibrium, fast particles densities, impurities, reactivity levels and turbulence. Strongly oriented to the exploration of control methods suitable for DEMO, DTT will also address the study of control systems based on physics and engineering models, which in DEMO are expected to take over the role of the diagnostics deemed to be incompatible with the harsh environment of a fusion reactor.

Diagnostics for DTT in view of DEMO

VALISA Marco;TARDOCCHI Marco;INNOCENTE Paolo
2018

Abstract

The main mission of the Divertor Test Tokamak (DTT) is to explore viable solutions to the power exhaust issues in a fusion reactor. The ultimate goal will be to qualify and control in various divertor configurations DEMO relevant heat flux densities to the wall while preserving the integrity of both the plasma facing components and the plasma performance. Experiments will involve tailored magnetic topologies, highly radiative regimes and advanced materials. In this contribution, we describe the package of diagnostic systems that will be deployed to allow DTT accomplishing its tasks. Diagnostics and feedback control are particularly functional to the need of maintaining the plasma close to equilibrium in situations prone to instabilities where the plasma wall interaction is optimized. Focusing on the divertor diagnostics, a particular effort will consist in obtaining space resolved measurements of density, temperature, impurity densities and ionization front that can be compared with the 2D results of model simulations. This will be possible using mainly optical diagnostics based on filtered cameras and spectrometers deployed in imaging mode, complemented by local measurements obtained by a space resolved Thomson scattering, Langmuir probes and gas puffing imaging systems. Diagnostics of the main plasma will assure a full qualification of the core and of the pedestal in terms of thermal contents, equilibrium, fast particles densities, impurities, reactivity levels and turbulence. Strongly oriented to the exploration of control methods suitable for DEMO, DTT will also address the study of control systems based on physics and engineering models, which in DEMO are expected to take over the role of the diagnostics deemed to be incompatible with the harsh environment of a fusion reactor.
2018
Istituto di fisica del plasma - IFP - Sede Milano
Istituto gas ionizzati - IGI - Sede Padova
Divertor Test Tokamak
DTT
DEMO
File in questo prodotto:
File Dimensione Formato  
prod_393881-doc_136319.pdf

solo utenti autorizzati

Descrizione: Diagnostics for DTT in view of DEMO
Tipologia: Versione Editoriale (PDF)
Dimensione 47.61 kB
Formato Adobe PDF
47.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/346601
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact