The Gamma-Ray Camera Upgrade (GCU) project aims at installing a new set of 19 scintillators with multi-pixel photon counter (MPPC) embedded, capable to meet the high fluxes expected during deuterium-tritium plasmas while improving the diagnostic spectroscopic capabilities. GCU will benefit from the Advanced Telecommunications Computing Architecture (ATCA)-based Data Acquisition System (DAQ), successfully installed and commissioned during the JET-EP2 enhancement. However, to cope with the new GCU detector signals, the DAQ Field Programmable Gate Array (FPGA) codes need to be rebuilt. This work presents the FPGA code upgrade for Gamma Camera (GC) DAQ, capable to sustain the expected fast response of new detectors, while exploiting the full capabilities of the DAQ. Dedicated codes were designed, capable to acquire the new signals at full rate, and simultaneously processing them in real-time through suitable algorithms, fitted to the new signals shape. First results of real-time processing codes applied to data from detector prototypes are presented.

New FPGA based hardware implementation for JET gamma-ray camera upgrade

Giacomelli L;Murari A;Nocente M;Rigamonti D;Tardocchi M;
2018

Abstract

The Gamma-Ray Camera Upgrade (GCU) project aims at installing a new set of 19 scintillators with multi-pixel photon counter (MPPC) embedded, capable to meet the high fluxes expected during deuterium-tritium plasmas while improving the diagnostic spectroscopic capabilities. GCU will benefit from the Advanced Telecommunications Computing Architecture (ATCA)-based Data Acquisition System (DAQ), successfully installed and commissioned during the JET-EP2 enhancement. However, to cope with the new GCU detector signals, the DAQ Field Programmable Gate Array (FPGA) codes need to be rebuilt. This work presents the FPGA code upgrade for Gamma Camera (GC) DAQ, capable to sustain the expected fast response of new detectors, while exploiting the full capabilities of the DAQ. Dedicated codes were designed, capable to acquire the new signals at full rate, and simultaneously processing them in real-time through suitable algorithms, fitted to the new signals shape. First results of real-time processing codes applied to data from detector prototypes are presented.
2018
Istituto di fisica del plasma - IFP - Sede Milano
ATCA
FPGA
Real-time processing
Gamma-ray spectroscopy
Nuclear fusion
File in questo prodotto:
File Dimensione Formato  
prod_395564-doc_136947.pdf

solo utenti autorizzati

Descrizione: Articolo Pubblicato
Tipologia: Versione Editoriale (PDF)
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/345393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact