We deal with the virtual element method (VEM) for solving the Poisson equation on a domain $\Omega$ with curved boundaries. Given a polygonal approximation $\Omega_h$ of the domain $\Omega$, the standard order m VEM [6], for m increasing, leads to a suboptimal convergence rate. We adapt the approach of [14] to VEM and we prove that an optimal convergence rate can be achieved by using a suitable correction depending on high order normal derivatives of the discrete solution at the boundary edges of $\Omega_h$, which, to retain computability, is evaluated after applying the projector $\Pi^\nabla$ onto the space of polynomials. Numerical experiments confirm the theory.
High order VEM on curved domains
S Bertoluzza;M Pennacchio;D Prada
2019
Abstract
We deal with the virtual element method (VEM) for solving the Poisson equation on a domain $\Omega$ with curved boundaries. Given a polygonal approximation $\Omega_h$ of the domain $\Omega$, the standard order m VEM [6], for m increasing, leads to a suboptimal convergence rate. We adapt the approach of [14] to VEM and we prove that an optimal convergence rate can be achieved by using a suitable correction depending on high order normal derivatives of the discrete solution at the boundary edges of $\Omega_h$, which, to retain computability, is evaluated after applying the projector $\Pi^\nabla$ onto the space of polynomials. Numerical experiments confirm the theory.File | Dimensione | Formato | |
---|---|---|---|
prod_399408-doc_142197.pdf
non disponibili
Descrizione: High order VEM on curved domains
Tipologia:
Versione Editoriale (PDF)
Dimensione
8.11 MB
Formato
Adobe PDF
|
8.11 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
prod_399408-doc_170868.pdf
accesso aperto
Descrizione: High order VEM on curved domains
Tipologia:
Versione Editoriale (PDF)
Dimensione
7.3 MB
Formato
Adobe PDF
|
7.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.