We deal with the virtual element method (VEM) for solving the Poisson equation on a domain $\Omega$ with curved boundaries. Given a polygonal approximation $\Omega_h$ of the domain $\Omega$, the standard order m VEM [6], for m increasing, leads to a suboptimal convergence rate. We adapt the approach of [14] to VEM and we prove that an optimal convergence rate can be achieved by using a suitable correction depending on high order normal derivatives of the discrete solution at the boundary edges of $\Omega_h$, which, to retain computability, is evaluated after applying the projector $\Pi^\nabla$ onto the space of polynomials. Numerical experiments confirm the theory.

High order VEM on curved domains

S Bertoluzza;M Pennacchio;D Prada
2019

Abstract

We deal with the virtual element method (VEM) for solving the Poisson equation on a domain $\Omega$ with curved boundaries. Given a polygonal approximation $\Omega_h$ of the domain $\Omega$, the standard order m VEM [6], for m increasing, leads to a suboptimal convergence rate. We adapt the approach of [14] to VEM and we prove that an optimal convergence rate can be achieved by using a suitable correction depending on high order normal derivatives of the discrete solution at the boundary edges of $\Omega_h$, which, to retain computability, is evaluated after applying the projector $\Pi^\nabla$ onto the space of polynomials. Numerical experiments confirm the theory.
2019
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Virtual Element method
Nitsche's method
curved domain.
File in questo prodotto:
File Dimensione Formato  
prod_399408-doc_142197.pdf

non disponibili

Descrizione: High order VEM on curved domains
Tipologia: Versione Editoriale (PDF)
Dimensione 8.11 MB
Formato Adobe PDF
8.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_399408-doc_170868.pdf

accesso aperto

Descrizione: High order VEM on curved domains
Tipologia: Versione Editoriale (PDF)
Dimensione 7.3 MB
Formato Adobe PDF
7.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/358460
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact