Many complex phenomena concerning extreme events causing natural disasters exhibit power-law behavior, reflecting a hierarchical or fractal structure. These phenomena seem to be susceptible to description using approaches inspired by statistical mechanics, particularly approaches involving generalizations of the classical concept of entropy. In this framework we consider the nonextensive Tsallis entropy; by its constrained optimization we derive the expression of the q- exponential distribution which controls the behavior of variables that, in geophysics, can be for instance seismic moment, length of faults, and inter-event times. We estimate the model parameters in the Bayesian perspective and apply this approach to the identification of different dynamical regimes in seismic sequences.
Molti fenomeni complessi riguardanti eventi estremi causa di disastri naturali si comportano secondo leggi potenza, che riflettono una struttura gerarchica o frattale. Questi fenomeni sembrano poter essere descritti attraverso approcci ispirati alla meccanica statistica, in particolare approcci che coinvolgono generalizzazioni del concetto classico di entropia. In questo quadro consideriamo l'entropia non-estensiva di Tsallis; mediante la sua ottimizzazione vincolata deriviamo l'espressione della distribuzione q-esponenziale che controlla il comportamento di variabili che, in geofisica, possono essere ad esempio il momento sismico, la lunghezza di faglie e il tempo tra eventi. Stimiamo i parametri del modello nell'ottica bayesiana e applichiamo questo approccio all'identificazione di diversi regimi dinamici in sequenze sismiche.
On the examination of a criticality measure for a complex system in a forecasting perspective
Rotondi R;Varini E
2019
Abstract
Many complex phenomena concerning extreme events causing natural disasters exhibit power-law behavior, reflecting a hierarchical or fractal structure. These phenomena seem to be susceptible to description using approaches inspired by statistical mechanics, particularly approaches involving generalizations of the classical concept of entropy. In this framework we consider the nonextensive Tsallis entropy; by its constrained optimization we derive the expression of the q- exponential distribution which controls the behavior of variables that, in geophysics, can be for instance seismic moment, length of faults, and inter-event times. We estimate the model parameters in the Bayesian perspective and apply this approach to the identification of different dynamical regimes in seismic sequences.File | Dimensione | Formato | |
---|---|---|---|
prod_405297-doc_141671.pdf
accesso aperto
Descrizione: On the examination of a criticality measure for a complex system in a forecasting perspective
Tipologia:
Versione Editoriale (PDF)
Dimensione
744.22 kB
Formato
Adobe PDF
|
744.22 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.