Contributo in atti di convegno, 2019, ENG, 10.1007/978-3-030-36599-8_16
Riccardo Albertoni
Istituto di Matematica Applicata e Tecnologie Informatiche "Enrico Magenes", Consiglio Nazionale delle Ricerche (IMATI-CNR), Via De Marini, 6, 16149 Genova, Italy
The paper investigates the use of Machine Learning (ML) to support experts validating skos:exactMatch links. It trains ML techniques provided by RapidMiner with manually validated links and shows how to use the obtained predictive models for saving expert efforts. The obtained results are preliminary but encouraging: the trained predictive models reduce up to 70% the number of manual checking required from experts, leaving only 10% of the wrong links unnoticed. Cutting the 70% of the expert burden is crucial, especially when dealing with the validation of large sets of links.
13th International Conference on Metadata and Semantic Research (MTSR 2019), pp. 187–193, Rome, Italy, 28-31/10/2019
Linkset correctness, Quality, Expert validation, Predictive Models
IMATI – Istituto di matematica applicata e tecnologie informatiche "Enrico Magenes"
ID: 411297
Year: 2019
Type: Contributo in atti di convegno
Creation: 2019-12-02 17:47:40.000
Last update: 2021-03-23 12:07:40.000
CNR authors
External links
OAI-PMH: Dublin Core
OAI-PMH: Mods
OAI-PMH: RDF
DOI: 10.1007/978-3-030-36599-8_16
URL: https://link.springer.com/chapter/10.1007%2F978-3-030-36599-8_16
External IDs
CNR OAI-PMH: oai:it.cnr:prodotti:411297
DOI: 10.1007/978-3-030-36599-8_16