Articolo in rivista, 2019, ENG, 10.1117/1.NPh.6.2.025007

BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy for the neuromonitoring of the premature newborn brain

Giovannella, Martina; Contini, Davide; Pagliazzi, Marco; Pifferi, Antonio; Spinelli, Lorenzo; Erdmann, Rainer; Donat, Roger; Rocchetti, Ignacio; Rehberger, Matthias; Koenig, Niels; Schmitt, Robert; Torricelli, Alessandro; Durduran, Turgut; Weigel, Udo M.

Barcelona Inst Sci & Technol; Politecnio Milano; CNR; PicoQuant GmbH; St Cugat Valles Barcelona; Fraunhofer Inst Prod Technol IPT; Rhein Westfal TH Aachen; Inst Catalana Recerca & Estudis Avancats; HemoPhoton SL

The BabyLux device is a hybrid diffuse optical neuromonitor that has been developed and built to be employed in neonatal intensive care unit for the noninvasive, cot-side monitoring of microvascular cerebral blood flow and blood oxygenation. It integrates time-resolved near-infrared and diffuse correlation spectroscopies in a user-friendly device as a prototype for a future medical grade device. We present a thorough characterization of the device performance using test measurements in laboratory settings. Tests on solid phantoms report an accuracy of optical property estimation of about 10%, which is expected when using the photon diffusion equation as the model. The measurement of the optical and dynamic properties is stable during several hours of measurements within 3% of the average value. In addition, these measurements are repeatable between different days of measurement, showing a maximal variation of 5% in the optical properties and 8% for the particle diffusion coefficient on a liquid phantom. The variability over test/retest evaluation is <3%. The integration of the two modalities is robust and without any cross talk between the two. We also perform in vivo measurements on the adult forearm during arterial cuff occlusion to show that the device can measure a wide range of tissue hemodynamic parameters. We suggest that this platform can form the basis of the next-generation neonatal neuromonitors to be developed for extensive, multicenter clinical testing. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.

Neurophotonics (Print) 6 (2)

Keywords

preterm infants, diffuse correlation spectroscopy, time-resolved near-infrared spectroscopy, neuromonitoring

CNR authors

Torricelli Alessandro, Spinelli Lorenzo Clemente

CNR institutes

IFN – Istituto di fotonica e nanotecnologie

ID: 414760

Year: 2019

Type: Articolo in rivista

Creation: 2020-01-07 12:16:15.000

Last update: 2020-01-17 12:02:02.000

External links

OAI-PMH: Dublin Core

OAI-PMH: Mods

OAI-PMH: RDF

DOI: 10.1117/1.NPh.6.2.025007

External IDs

CNR OAI-PMH: oai:it.cnr:prodotti:414760

DOI: 10.1117/1.NPh.6.2.025007

ISI Web of Science (WOS): 000481888400008

Scopus: 2-s2.0-85067054937