Feasibility of wind-farm projects emphasizes the need for a timely evaluation of the site-specific wind potential (i.e., the electrical power production from wind sources) because, unfortunately, it is usually hampered by the need for long-term anemometric sampling. In contrast, short-term (i.e., less than one year's worth of) data may not contain enough information if collected when the wind is not blowing from the prevailing direction(s). From a technological point of view, wind turbine performances drops down when they work one in trail of another, then wind direction plays a strategic role since it determines the optimal wind-farm layout design. By means of a real-case study, a Bayesian approach is proposed and shown to be capable of enhancing the annual wind rose prediction at the given candidate site by integrating the short-term sample data with both historical information (from a neighboring survey station) and expert opinion. Predictive wind direction and speed distributions are obtained marginally at first. Then, the predictive wind rose is derived by non-parametric modeling of the dependency between wind speed and direction based on the short-term data collected at the candidate site.

A Bayesian approach for site-specific wind rose prediction

A Pievatolo
2020

Abstract

Feasibility of wind-farm projects emphasizes the need for a timely evaluation of the site-specific wind potential (i.e., the electrical power production from wind sources) because, unfortunately, it is usually hampered by the need for long-term anemometric sampling. In contrast, short-term (i.e., less than one year's worth of) data may not contain enough information if collected when the wind is not blowing from the prevailing direction(s). From a technological point of view, wind turbine performances drops down when they work one in trail of another, then wind direction plays a strategic role since it determines the optimal wind-farm layout design. By means of a real-case study, a Bayesian approach is proposed and shown to be capable of enhancing the annual wind rose prediction at the given candidate site by integrating the short-term sample data with both historical information (from a neighboring survey station) and expert opinion. Predictive wind direction and speed distributions are obtained marginally at first. Then, the predictive wind rose is derived by non-parametric modeling of the dependency between wind speed and direction based on the short-term data collected at the candidate site.
2020
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI - Sede Secondaria Milano
Wind rose; Site-specific prediction; Short-term data; Bayesian approach; Wind speed and direction joint distribution
File in questo prodotto:
File Dimensione Formato  
prod_418214-doc_147630.pdf

non disponibili

Descrizione: A Bayesian approach for site-specific wind rose prediction
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
elsarticle-template-c-stag-new-reg.pdf

Open Access dal 07/01/2022

Descrizione: versione accettata
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/368796
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact