Articolo in rivista, 2020, ENG, 10.1016/j.actaastro.2020.05.005
Rossi A.; Alessi E.M.; Schettino G.; Schaus V.; Valsecchi G.B.
Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, FI, 50019, Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy, , , Italy; Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, FI, 50019, Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy, , , Italy; Istituto di Matematica Applicata e Tecnologie Informatiche "Enrico Magenes", Consiglio Nazionale delle Ricerche, Via Alfonso Corti 12, Milano, 20133, Istituto di Matematica Applicata e Tecnologie Informatiche "Enrico Magenes", Consiglio Nazionale delle Ricerche, via Alfonso Corti 12, 20133 Milano, Italy, , Italy; TU Braunschweig, Institute of Space Systems, TU Braunschweig, Institute of Space Systems, Germany, , Germany; Institute for Space Astrophysics and Planetology & IFAC-CNR, Institute for Space Astrophysics and Planetology & IFAC-CNR, Italy, , Italy
The ReDSHIFT H2020 European project has shown, among other findings, that passive disposal procedures can benefit from the exploitation of dynamical perturbations. One key aspect of the project was a study on the dynamical disposal of spacecraft at the end-of-life by exploiting natural perturbations and identifying stable and unstable regions in the phase space, where the objects could be moved to exploit either long term "graveyards" or, possibly and preferentially, faster escape routes (the so-called "de-orbiting highways"). In particular, for the Low Earth Orbit (LEO) region, a natural eccentricity growth can be leveraged in order to reenter to the Earth's atmosphere at a lower ?v-budget. The numerical cartography of the region has been proven from a theoretical perspective, on the basis of a frequency analysis focused on solar radiation pressure and lunisolar perturbations and on dynamical systems theory tools. In this work, we summarize the whole study concerning the dynamics that characterizes the LEO region in the long-term, by giving a comprehensive picture of the theoretical findings together with their possible exploitation for the debris mitigation. The efficiency of the "de-orbiting highways" is tested and validated with a "thought experiment" by means of long-term propagation of a population of objects stemming from a specific traffic launch. It is shown how the de-orbiting corridors could be very effective in removing the majority of objects from the high LEO region at the end-of-life, thus contributing to the stabilization of the space debris environment, in particular for high-altitude spacecraft.
Acta astronautica 174 , pp. 159–165
Space debris, Astrodynamics, Orbital resonances
Valsecchi Giovanni Battista, Rossi Alessandro, Schettino Giulia, Alessi Elisa Maria
IFAC – Istituto di fisica applicata "Nello Carrara", IMATI – Istituto di matematica applicata e tecnologie informatiche "Enrico Magenes"
ID: 422701
Year: 2020
Type: Articolo in rivista
Creation: 2020-05-22 12:44:21.000
Last update: 2021-04-02 14:56:34.000
External links
OAI-PMH: Dublin Core
OAI-PMH: Mods
OAI-PMH: RDF
DOI: 10.1016/j.actaastro.2020.05.005
URL: https://www.sciencedirect.com/science/article/abs/pii/S0094576520302897
External IDs
CNR OAI-PMH: oai:it.cnr:prodotti:422701
DOI: 10.1016/j.actaastro.2020.05.005
Scopus: 2-s2.0-85084608416
ISI Web of Science (WOS): 000540350100016