We deal with the finite element tearing and interconnecting dual primal precon- ditioner for elliptic problems discretized by the virtual element method. We extend the result of [S. Bertoluzza, M. Pennacchio, and D. Prada, Calcolo, 54 (2017), pp. 1565-1593] to the three di- mensional case. We prove polylogarithmic condition number bounds, independent of the number of subdomains, the mesh size, and jumps in the diffusion coefficients. Numerical experiments validate the theory.
FETI-DP for the Three Dimensional Virtual Element Method
S Bertoluzza;M Pennacchio
;D Prada
2020
Abstract
We deal with the finite element tearing and interconnecting dual primal precon- ditioner for elliptic problems discretized by the virtual element method. We extend the result of [S. Bertoluzza, M. Pennacchio, and D. Prada, Calcolo, 54 (2017), pp. 1565-1593] to the three di- mensional case. We prove polylogarithmic condition number bounds, independent of the number of subdomains, the mesh size, and jumps in the diffusion coefficients. Numerical experiments validate the theory.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_422768-doc_151068.pdf
solo utenti autorizzati
Descrizione: FETI-DP for the Three Dimensional Virtual Element Method
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
996.29 kB
Formato
Adobe PDF
|
996.29 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1812.00635v2.pdf
accesso aperto
Descrizione: FETI-DP for the Three Dimensional Virtual
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
923.46 kB
Formato
Adobe PDF
|
923.46 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.