Articolo in rivista, 2020, ENG, 10.1214/20-SS128

Flexible, boundary adapted, nonparametric methods for the estimation of univariate piecewise-smooth functions

Amato, Umberto; Antoniadis, Anestis; De Feis, Italia

CNR; Univ Grenoble Alpes; Univ Cape Town; CNR

We present and compare some nonparametric estimation methods (wavelet and/or spline-based) designed to recover a one-dimensional piecewise-smooth regression function in both a fixed equidistant or not equidistant design regression model and a random design model.

Statistics surveys 14 , pp. 32–70

Keywords

Wavelets, boundary corrections, nonparametric regression, smoothing splines, thresholding, model selection, backfitting

CNR authors

Amato Umberto, De Feis Italia

CNR institutes

IAC – Istituto per le applicazioni del calcolo "Mauro Picone"

ID: 423454

Year: 2020

Type: Articolo in rivista

Creation: 2020-06-04 16:58:24.000

Last update: 2021-03-27 00:09:56.000

External links

OAI-PMH: Dublin Core

OAI-PMH: Mods

OAI-PMH: RDF

DOI: 10.1214/20-SS128

External IDs

CNR OAI-PMH: oai:it.cnr:prodotti:423454

DOI: 10.1214/20-SS128

ISI Web of Science (WOS): 000522630800001

Scopus: 2-s2.0-85079485556