Thermionic energy converters are heat engines based on the direct emission of electrons from a hot cathode toward a colder anode. Because the thermionic emission is unavoidably accompanied by photonic emission, radiative energy transfer is a significant source of losses in these devices. In this Letter, we provide the experimental demonstration of a hybrid thermionic-photovoltaic device that is able to produce electricity not only from the electrons but also from the photons that are emitted by the cathode. Thermionic electrons are injected in the valence band of a gallium arsenide semiconducting anode, then pumped to the conduction band by the photovoltaic effect, and finally extracted from the conduction band to produce useful energy before they are reinjected in the cathode. We show that such a hybrid device produces a voltage boost of similar to 1 V with respect to a reference thermionic device made of the same materials and operating under the same conditions. This proof of concept paves the way to the development of efficient thermionic and photovoltaic devices for the direct conversion of heat into electricity.

Photovoltaic Anodes for Enhanced Thermionic Energy Conversion

Bellucci A;Mastellone M;Serpente V;Girolami M;Kaciulis S;Mezzi A;Trucchi D M;
2020

Abstract

Thermionic energy converters are heat engines based on the direct emission of electrons from a hot cathode toward a colder anode. Because the thermionic emission is unavoidably accompanied by photonic emission, radiative energy transfer is a significant source of losses in these devices. In this Letter, we provide the experimental demonstration of a hybrid thermionic-photovoltaic device that is able to produce electricity not only from the electrons but also from the photons that are emitted by the cathode. Thermionic electrons are injected in the valence band of a gallium arsenide semiconducting anode, then pumped to the conduction band by the photovoltaic effect, and finally extracted from the conduction band to produce useful energy before they are reinjected in the cathode. We show that such a hybrid device produces a voltage boost of similar to 1 V with respect to a reference thermionic device made of the same materials and operating under the same conditions. This proof of concept paves the way to the development of efficient thermionic and photovoltaic devices for the direct conversion of heat into electricity.
2020
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
THERMOPHOTOVOLTAIC ENERGY
THERMOELECTRIC GENERATORS
Storage
File in questo prodotto:
File Dimensione Formato  
prod_423763-doc_151407.pdf

solo utenti autorizzati

Descrizione: published online
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/411874
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 38
social impact