The impurity concentration in the tokamak divertor plasma is a necessary input for predictive scaling of divertor detachment, however direct measurements from existing tokamaks in different divertor plasma conditions are limited. To address this, we have applied a recently developed spectroscopic N II line ratio technique for measuring the N concentration in the divertor to a range of H-mode and L-mode plasma from the ASDEX Upgrade and JET tokamaks, respectively. The results from both devices show that as the power crossing the separatrix, P-sep, is increased under otherwise similar core conditions (e.g. density), a higher N concentration is required to achieve the same detachment state. For example, the N concentrations at the start of detachment increase from approximate to 2% to approximate to 9% as P-sep, is increased from approximate to 2.5 MW to approximate to 7 MW. These results tentatively agree with scaling law predictions (e.g. Goldston et al.) motivating a further study examining the parameters which affect the N concentration required to reach detachment. Finally, the N concentrations from spectroscopy and the ratio of D and N gas valve fluxes agree within experimental uncertainty only when the vessel surfaces are fully-loaded with N.

An assessment of nitrogen concentrations from spectroscopic measurements in the JET and ASDEX upgrade divertor

Alessi E;Brombin M;Carraro L;Gervasini G;Innocente P;Laguardia L;Lazzaro E;Marchetto C;Murari A;Muraro A;Paccagnella R;Pasqualotto R;Pomaro N;Puiatti M E;Sozzi C;Tardocchi M;Terranova D;Uccello A;Vianello N;
2019

Abstract

The impurity concentration in the tokamak divertor plasma is a necessary input for predictive scaling of divertor detachment, however direct measurements from existing tokamaks in different divertor plasma conditions are limited. To address this, we have applied a recently developed spectroscopic N II line ratio technique for measuring the N concentration in the divertor to a range of H-mode and L-mode plasma from the ASDEX Upgrade and JET tokamaks, respectively. The results from both devices show that as the power crossing the separatrix, P-sep, is increased under otherwise similar core conditions (e.g. density), a higher N concentration is required to achieve the same detachment state. For example, the N concentrations at the start of detachment increase from approximate to 2% to approximate to 9% as P-sep, is increased from approximate to 2.5 MW to approximate to 7 MW. These results tentatively agree with scaling law predictions (e.g. Goldston et al.) motivating a further study examining the parameters which affect the N concentration required to reach detachment. Finally, the N concentrations from spectroscopy and the ratio of D and N gas valve fluxes agree within experimental uncertainty only when the vessel surfaces are fully-loaded with N.
2019
Istituto di fisica del plasma - IFP - Sede Milano
Istituto gas ionizzati - IGI - Sede Padova
Impurity
Nitrogen
Divertor
Concentration
Spectroscopy
Tokamak
File in questo prodotto:
File Dimensione Formato  
prod_430543-doc_153826.pdf

accesso aperto

Descrizione: An assessment of nitrogen concentrations from spectroscopic measurements in the JET and ASDEX upgrade divertor
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/403122
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact