Accurate rainfall estimates are critical for areas presenting high hydrological risks. We have devised a general machine learning framework based on a deep learning architecture, which also integrates information derived from remote sensing measurements, such as weather radars and satellites. Experimental results conducted on real data from a southern region in Italy, provided by the Department of Civil Protection (DCP), show significant improvements compared to current state-of-the-art methods.

Using Deep Learning and Data Integration for Accurate Rainfall Estimates

Gianluigi Folino;Massimo Guarascio;Francesco Chiaravalloti;
2020

Abstract

Accurate rainfall estimates are critical for areas presenting high hydrological risks. We have devised a general machine learning framework based on a deep learning architecture, which also integrates information derived from remote sensing measurements, such as weather radars and satellites. Experimental results conducted on real data from a southern region in Italy, provided by the Department of Civil Protection (DCP), show significant improvements compared to current state-of-the-art methods.
2020
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
rainfall estimation
ensemble learning
DNN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/381074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact