Contributo in atti di convegno, 2019, ENG

From W7-X Towards ITER and Beyond: 2019 Status on EU Fusion Gyrotron Developments

By:Jelonnek, J (Jelonnek, John)[ 1,2 ] ; Aiello, G (Aiello, Gaetano)[ 3 ] ; Albajar, F (Albajar, Ferran)[ 4 ] ; Alberti, S (Alberti, Stefano)[ 5 ] ; Avramidis, KA (Avramidis, Konstantinos A.)[ 1 ] ; Bertinetti, A (Bertinetti, Andrea)[ 6 ] ; Brucker, PT (Bruecker, Philipp T.)[ 1 ] ; Bruschi, A (Bruschi, Alex)[ 7 ] ; Chelis, I (Chelis, Ioannis)[ 8 ] ; Dubray, J (Dubray, Jeremie)[ 5 ] ; Fanale, F (Fanale, Francesco)[ 7 ] ; Fasel, D (Fasel, Damien)[ 6 ] ; Franke, T (Franke, Thomas)[ 9 ] ; Gantenbein, G (Gantenbein, Gerd)[ 1 ] ; Garavaglia, S (Garavaglia, Saul)[ 7 ] ; Genoud, J (Genoud, Jeremy)[ 5 ] ; Granucci, G (Granucci, Gustavo)[ 7 ] ; Hogge, JP (Hogge, Jean-Philippe)[ 5 ] ; Illy, S (Illy, Stefan)[ 1 ] ; Ioannidis, ZC (Ioannidis, Zisis C.)[ 1 ] ; Jin, JB (Jin, Jianbo)[ 1 ] ; Laqua, H (Laqua, Heinrich)[ 10 ] ; Latsas, GP (Latsas, George P.)[ 8 ] ; Leggieri, A (Leggieri, Alberto)[ 11 ] ; Legrand, F (Legrand, Francois)[ 11 ] ; Marchesin, R (Marchesin, Rodolphe)[ 11 ] ; Marek, A (Marek, Alexander)[ 1 ] ; Marletaz, B (Marletaz, Blaise)[ 5 ] ; Obermaier, M (Obermaier, Martin)[ 1 ] ; Pagonakis, IG (Pagonakis, Ioannis Gr.)[ 1 ] ; Peponis, DV (Peponis, Dimitrios V.)[ 8 ] ; Ruess, S (Ruess, Sebastian)[ 1,2 ] ; Ruess, T (Ruess, Tobias)[ 1 ] ; Rzesnicki, T (Rzesnicki, Tomasz)[ 1 ] ; Sanchez, P (Sanchez, Paco)[ 4 ] ; Savoldi, L (Savoldi, Laura)[ 6 ] ; Scherer, T (Scherer, T.)[ 3 ] ; Strauss, D (Strauss, D.)[ 3 ] ; Thouvenin, P (Thouvenin, Philippe)[ 11 ] ; Thumm, M (Thumm, Manfred)[ 1,2 ] ; Tigelis, I (Tigelis, Ioannis)[ 8 ] ; Tran, MQ (Minh-Quang Tran)[ 5 ] ; Wilde, F (Wilde, Fabian)[ 10 ] ; Wu, CR (Wu, Chuanren)[ 1 ] ; Zisis, A (Zisis, Anastasios)[ 8 ] ...Less

[ 1 ]? Karlsruhe Inst Technol, IHM, D-76131 Karlsruhe, Germany [ 2 ]? Karlsruhe Inst Technol, IHE, D-76131 Karlsruhe, Germany [ 3 ]? Karlsruhe Inst Technol, AWP, IAM, D-76131 Karlsruhe, Germany [ 4 ]? Fus Energy, Barcelona 08019, Spain [ 5 ]? Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland [ 6 ]? Politecn Torino POLITO, Corso Duca Abruzzi, I-10129 Turin, Italy [ 7 ]? Natl Res Council Italy, Inst Plasma Phys P Caldirola, Milan, Italy [ 8 ]? Univ Athens, Fac Phys, Athens, Greece [ 9 ]? EUROfus Consortium, D-85748 Garching, Germany [ 10 ]? Teilinst Greifswald, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany [ 11 ]? THALES, Microwave & Imaging Solut, F-78141 Velizy Villacoublay, France

In Europe, the research and development with main focus on achieving robust industrial designs of series gyrotrons for electron cyclotron heating and current drive of today's nuclear fusion experiments and towards a future DEMOnstration fusion power plant is constantly progressing. The R&D is following two different paths. Both are complementing each other: Firstly, it is the adaption of the physical design and basic mechanical construction of the reliably operating 140 GHz, 1 MW CW (spec.: 920 kW, 1800 s) gyrotron of the stellarator Wendelstein 7-X (W7-X), Greifswald, Germany. With regards to time and costs it is the target to perform reliable developments of fusion gyrotrons with advanced specifications for today's plasma fusion experiments. Main focus is on the development of the first EU 170 GHz, 1 MW CW (3600 s) gyrotron for the installation in ITER, Cadarache, France. Another adaption is the dual-frequency 126/84 GHz 1 MW (2 s) gyrotron upgrade for the medium size TCV tokamak, Lausanne, Switzerland. Finally, it is the upgrade of the W7-X gyrotron design towards an RF output power per unit of up to 1.5 MW and possible dual-frequency operation by keeping the basic mechanical construction. Additional to the proven design it allows to fit the new 1.5 MW gyrotron into the already existing infrastructure and to reuse existing W7-X gyrotron auxiliaries, e. g. the high-power voltage supply (HV PS) and the superconducting (SC) magnet. The second R&D path is defined by the complementary approach with regards to development risks towards a future gyrotron which shall fulfil the significant more advanced specifications of a future EU DEMO. The starting point is the 2 MW EU/KIT coaxial-cavity gyrotron design. Main requirements are an RF output power of 2 MW CW at above 200 GHz, multiple operating frequencies, frequency step-tunability and a total efficiency above 60 %.

IEEE International Vacuum Electronics Conference IVEC, Busan, SOUTH KOREA, APR 28-MAY 01, 2019

Keywords

Gyrotron; EC H&CD; nuclear fusion; W7-X; ITER; TCV tokamak; DEMO

CNR authors

Garavaglia Saul Francesco, Fanale Francesco, Granucci Gustavo, Bruschi Alessandro

CNR institutes

IFP – Istituto di fisica del plasma "Piero Caldirola"

ID: 443689

Year: 2019

Type: Contributo in atti di convegno

Creation: 2021-02-01 10:02:25.000

Last update: 2021-04-08 23:25:17.000

External links

OAI-PMH: Dublin Core

OAI-PMH: Mods

OAI-PMH: RDF

External IDs

CNR OAI-PMH: oai:it.cnr:prodotti:443689