Quantum dots (QDs) have extraordinary strong light absorption and size tunable bandgap. However, QD films are typically limited to ~200-300 nm due to their poor charge mobility. This severely limits the quantum efficiency of QD devices for ? <750 nm (infrared). Herein, we report a record 1 ?m thick QD film using intercalated graphene layers as transparent current extractors. This overcomes QD poor mobility, ensuring both effective light absorption and charge extraction towards the near-infrared reaching quantum efficiency (EQE) of 90%. The short diffusion length (LD<200 nm) of QDs limits their useful thickness to ~200-300 nm1-4, resulting in poor infrared light absorption. To overcome this limitation, we have built a 1 ?m thick QD film with intercalated transparent graphene electrodes that keep high charge collection efficiency. As a result, the 1 ?m intercalated devices show a superior EQE reaching 90% at ? ~800 nm without the drop of quantum efficiency at ? ~700 nm observed in most QD devices. The EQE of intercalated devices improves over the entire ?~ 600-1100 nm spectrum as the thickness increases from 100 nm to 1 ?m, clearly breaking the restriction that the diffusion length of QDs imposes on the film thickness. This improves absorption and charge collection in the infrared.

Record 1-micron thick QD film photodetectors using intercalated graphene electrodes for high responsivity in the infrared

Ingrosso C;Panniello A;Striccoli M;Bianco G V;Agostiano A;Bruno G;Curri M L;
2020

Abstract

Quantum dots (QDs) have extraordinary strong light absorption and size tunable bandgap. However, QD films are typically limited to ~200-300 nm due to their poor charge mobility. This severely limits the quantum efficiency of QD devices for ? <750 nm (infrared). Herein, we report a record 1 ?m thick QD film using intercalated graphene layers as transparent current extractors. This overcomes QD poor mobility, ensuring both effective light absorption and charge extraction towards the near-infrared reaching quantum efficiency (EQE) of 90%. The short diffusion length (LD<200 nm) of QDs limits their useful thickness to ~200-300 nm1-4, resulting in poor infrared light absorption. To overcome this limitation, we have built a 1 ?m thick QD film with intercalated transparent graphene electrodes that keep high charge collection efficiency. As a result, the 1 ?m intercalated devices show a superior EQE reaching 90% at ? ~800 nm without the drop of quantum efficiency at ? ~700 nm observed in most QD devices. The EQE of intercalated devices improves over the entire ?~ 600-1100 nm spectrum as the thickness increases from 100 nm to 1 ?m, clearly breaking the restriction that the diffusion length of QDs imposes on the film thickness. This improves absorption and charge collection in the infrared.
2020
Istituto di Nanotecnologia - NANOTEC
Istituto per i Processi Chimico-Fisici - IPCF
Charge carrier extraction
Graphene
light absorption
photodetector
Quantum dots
File in questo prodotto:
File Dimensione Formato  
Record 1-micron thick QD film photodetectors using intercalated graphene electrodes for high responsivity in the infrared.pdf

solo utenti autorizzati

Tipologia: Abstract
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/429003
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact