In this work, for the first time, snail slime from garden snails "Helix Aspersa Müller", has been used to induce the formation of eco-friendly gold nanoparticles (AuNPs-SS) suitable for biomedical applications. An AuNPs-SS comprehensive investigation was performed and AuNPs with an average particle size of 14 ± 6 nm were observed, stabilized by a slime snail-based organic layer. Indeed, as recognized in high-resolution MALDI-MS analyses, and corroborated by FESEM, UV-Vis, ATR-FTIR, and XPS results, it was possible to assess the main presence of peptides and amino acids as the main components of the slime, that, combined with the AuNPs confers on them interesting properties. More specifically, we tested, in vitro, the AuNPs-SS safety in human keratinocytes and their potential effect on wound healing as well as their anti-inflammatory properties in murine macrophages. Moreover, the AuNPs-SS treatment resulted in a significant increase of the urokinase-type plasminogen activator receptor (uPAR), essential for keratinocyte adhesion, spreading, and migration, together with the reduction of LPS-induced IL1-? and IL-6 cytokine levels, and completely abrogated the synthesis of inducible nitric oxide synthase (iNOS). This journal is
Biomolecules from snail mucus (: Helix aspersa) conjugated gold nanoparticles, exhibiting potential wound healing and anti-inflammatory activity
Gubitosa Jennifer;Fini Paola;Fanelli Fiorenza;Fracassi Francesco;Cosma Pinalysa
2020
Abstract
In this work, for the first time, snail slime from garden snails "Helix Aspersa Müller", has been used to induce the formation of eco-friendly gold nanoparticles (AuNPs-SS) suitable for biomedical applications. An AuNPs-SS comprehensive investigation was performed and AuNPs with an average particle size of 14 ± 6 nm were observed, stabilized by a slime snail-based organic layer. Indeed, as recognized in high-resolution MALDI-MS analyses, and corroborated by FESEM, UV-Vis, ATR-FTIR, and XPS results, it was possible to assess the main presence of peptides and amino acids as the main components of the slime, that, combined with the AuNPs confers on them interesting properties. More specifically, we tested, in vitro, the AuNPs-SS safety in human keratinocytes and their potential effect on wound healing as well as their anti-inflammatory properties in murine macrophages. Moreover, the AuNPs-SS treatment resulted in a significant increase of the urokinase-type plasminogen activator receptor (uPAR), essential for keratinocyte adhesion, spreading, and migration, together with the reduction of LPS-induced IL1-? and IL-6 cytokine levels, and completely abrogated the synthesis of inducible nitric oxide synthase (iNOS). This journal isFile | Dimensione | Formato | |
---|---|---|---|
AuBl completo.pdf
solo utenti autorizzati
Descrizione: Versione editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
5.69 MB
Formato
Adobe PDF
|
5.69 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
AuBl completo.docx
Open Access dal 21/01/2021
Descrizione: Post print
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
2.15 MB
Formato
Microsoft Word XML
|
2.15 MB | Microsoft Word XML | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.