An incoherent Thomson scattering diagnostic will be installed in the JT-60SA tokamak to measure electron temperature and electron density profiles. The target radial spatial resolution is 25 mm with 46 spatial channels. The accuracy in electron temperature and density is a few percent at ne = 7.5 × 1019 m-3, which is the expected value in the plasma core. This paper presents the designs of collection optics, fibers with their alignment system, and polychromators. The collection optics overcomes unique issues for superconducting fusion devices, i.e., limited design space, high-temperature measurements, and harsh radiation condition. When in several years the more performing plasma will generate intense nuclear radiation, the lens materials of the optics can be replaced by radiation resistant glasses without major changes in the lens holder. It will prevent transmission degradation and keep stable measurement accuracy.

Design of JT-60SA core Thomson scattering diagnostic system

Pasqualotto R;Fassina A;
2021

Abstract

An incoherent Thomson scattering diagnostic will be installed in the JT-60SA tokamak to measure electron temperature and electron density profiles. The target radial spatial resolution is 25 mm with 46 spatial channels. The accuracy in electron temperature and density is a few percent at ne = 7.5 × 1019 m-3, which is the expected value in the plasma core. This paper presents the designs of collection optics, fibers with their alignment system, and polychromators. The collection optics overcomes unique issues for superconducting fusion devices, i.e., limited design space, high-temperature measurements, and harsh radiation condition. When in several years the more performing plasma will generate intense nuclear radiation, the lens materials of the optics can be replaced by radiation resistant glasses without major changes in the lens holder. It will prevent transmission degradation and keep stable measurement accuracy.
2021
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
Incoherent scattering
Light scattering
Magnetoplasma
Superconducting devices
Temperature measurement
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/425221
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact