Articolo in rivista, 2021, ENG, 10.1109/JSTQE.2020.3025717

Miscalibration-Tolerant Fourier Ptychography

Bianco, Vittorio; Mandracchia, Biagio; Bhal, Jaromr; Barone, Dario; Memmolo, Pasquale; Ferraro, Pietro

CNR; Palacky Univ; Univ Napoli Federico II

Fourier Ptychography probes the sample from different directions to achieve label-free quantitative phase imaging with a large space-bandwidth product. However, special attention has to be paid in the calibration of the optical setup to assure the accurate knowledge of the geometrical parameters involved in the image reconstruction. Any slight misalignment can provoke incorrect synthesis of the observables and, in turn, severe phase errors in the resulting high-resolution image. Here, we present a new processing pipeline that automatically removes such a priori unknown artifacts, thus making Fourier Ptychography miscalibration-tolerant. This result is achieved through a numerical Multi-Look approach that generates and combines multiple reconstructions of the same set of observables where phase artifacts are largely uncorrelated and, thus, automatically suppress each other. The proposed method is non-iterative, fully parallelizable, and completely blind, unlocking the use of Fourier Ptychography as an easy to handle tool or add-on to existing microscopes to be employed by unskilled users, thus paving the way to biomedical and clinical practices.

IEEE journal of selected topics in quantum electronics 27 (4)

Keywords

Lighting, Microscopy, Light emitting diodes, Adaptive optics, Optical imaging, Image resolution, Fourier Ptychographic Microscopy, Calibration, Image processing, Phase-contrast imaging

CNR authors

Ferraro Pietro, Memmolo Pasquale, Bianco Vittorio

CNR institutes

ID: 451411

Year: 2021

Type: Articolo in rivista

Creation: 2021-04-03 17:53:18.000

Last update: 2021-04-05 20:15:29.000

External links

OAI-PMH: Dublin Core

OAI-PMH: Mods

OAI-PMH: RDF

DOI: 10.1109/JSTQE.2020.3025717

External IDs

CNR OAI-PMH: oai:it.cnr:prodotti:451411

DOI: 10.1109/JSTQE.2020.3025717

ISI Web of Science (WOS): 000582515200001