Articolo in rivista, 2020, ENG, 10.1016/j.ifacol.2020.12.1440
Bianchi, D.; Borri, A.; Di Benedetto, M. D.; Di Gennaro, S.
Consiglio Nazionale delle Ricerche; Università degli Studi dell'Aquila; University of G. d'Annunzio Chieti and Pescara
We present a novel solution to the attitude control problem of ground vehicles by means of the Active Front Steering (AFS) system. The classical feedback linearization method is often used to track a reference yaw dynamics while guaranteeing vehicle stability and handling performance, but it is difficult to apply because it relies on the exact knowledge of the nonlinearities of the vehicle, in particular the tire model. In this work, the unknown nonlinearities are real-time learnt on the basis of the universal approximation property, widely used in the area of neural networks. With this approximation method, the Uniform Ultimate Boundedness (UUB) property with respect to tracking and estimation errors can be formally proven. Preliminary simulation results show good tracking capabilities when model and parameters are affected by uncertainties, also in presence of actuator saturation.
IFAC-PapersOnLine 53 (2), pp. 14420–14425
Automotive control, Learning, Neural networks, Nonlinear control, Uncertain systems
IASI – Istituto di analisi dei sistemi ed informatica "Antonio Ruberti"
ID: 459625
Year: 2020
Type: Articolo in rivista
Creation: 2021-11-26 12:28:46.000
Last update: 2021-12-10 11:04:28.000
CNR authors
External links
OAI-PMH: Dublin Core
OAI-PMH: Mods
OAI-PMH: RDF
DOI: 10.1016/j.ifacol.2020.12.1440
URL: http://www.scopus.com/record/display.url?eid=2-s2.0-85105051421&origin=inward
External IDs
CNR OAI-PMH: oai:it.cnr:prodotti:459625
DOI: 10.1016/j.ifacol.2020.12.1440
Scopus: 2-s2.0-85105051421