Point sampling is widely used in several Computer Graphics' applications, such as point-based modelling and rendering, image and geometry processing. Starting from the kernel-based sampling, which approximates an input signal on a regular grid as the sum of Gaussian kernels, we introduce a set of additional variables that control the kernels' width and height. These additional variables allow us to improve the quality of the distribution of the samples, and to achieve a higher approximation accuracy and a more accurate feature preservation, with a slightly higher computational cost. To further improve the sampling with respect to the input data, we introduce a sampling initialisation for processing high resolution signals, without incurring in limits for memory allocation, and a sampling optimisation, which adaptively selects the number and location of the samples to achieve the target approximation accuracy, without oversampling the input signal. To show the generality of the proposed approach for unstructured data of arbitrary dimension, we apply our kernel-based sampling to different types of data, such as 2D images, solutions to PDEs on arbitrary domains, and vector fields.

Kernel-Based Sampling of Arbitrary Signals

S Cammarasana
Primo
;
G Patane'
2021

Abstract

Point sampling is widely used in several Computer Graphics' applications, such as point-based modelling and rendering, image and geometry processing. Starting from the kernel-based sampling, which approximates an input signal on a regular grid as the sum of Gaussian kernels, we introduce a set of additional variables that control the kernels' width and height. These additional variables allow us to improve the quality of the distribution of the samples, and to achieve a higher approximation accuracy and a more accurate feature preservation, with a slightly higher computational cost. To further improve the sampling with respect to the input data, we introduce a sampling initialisation for processing high resolution signals, without incurring in limits for memory allocation, and a sampling optimisation, which adaptively selects the number and location of the samples to achieve the target approximation accuracy, without oversampling the input signal. To show the generality of the proposed approach for unstructured data of arbitrary dimension, we apply our kernel-based sampling to different types of data, such as 2D images, solutions to PDEs on arbitrary domains, and vector fields.
2021
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI - Sede Secondaria Genova
Kernel-based sampling, Multi-scale kernel-based sampling, Adaptive kernel-based sampling, Data and signal sampling, Signal approximation, Radial basis functions
File in questo prodotto:
File Dimensione Formato  
prod_463308-doc_181436.pdf

solo utenti autorizzati

Descrizione: Kernel-Based Sampling of Arbitrary Signals
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 7.3 MB
Formato Adobe PDF
7.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Kernel-Based+Sampling+of+Arbitrary+Signals_print.pdf

Open Access dal 17/08/2023

Descrizione: Kernel-Based Sampling of Arbitrary Signals
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 18.99 MB
Formato Adobe PDF
18.99 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/445409
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact