Agostinetti P.; Benedetti E.; Bonifetto R.; Bonesso M.; Cavenago M.; Dal Bello S.; Dalla Palma M.; D'Ambrosio D.; Dima R.; Favero G.; Ferro A.; Fincato M.; Giorgetti F.; Grando L.; Granucci G.; Lombroni R.; Marconato N.; Marsilio R.; Murari A.; Patton T.; Pavei M.; Pepato A.; Pilan N.; Raffaelli F.; Rebesan P.; Recchia M.; Ripani M.; Romano A.; Sartori E.; Tinti P.; Valente M.; Variale V.; Ventura G.; Veronese F.; Zanino R.; Zavarise G.
Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Padova, Italy; CNR Institute for Plasma Science and Tecnology-Section of Padova, Italy; INFN-Section of Pisa, Italy; Politecnico di Torino, Italy; INFN-Section of Padova, Italy; Dept. of Industrial Engineering, University of Padova, Italy; INFN-LNL, Legnaro (PD), Italy; DEIM, Università degli Studi della Tuscia, Viterbo, Italy; CNR Institute for Plasma Science and Tecnology-Section of Milano, Italy; Dept. of Mechanical Engineering, Politecnico di Milano, Italy; INFN-Section of Genova, Italy; DTT S.c. a. r.l., Consorzio per l'attuazione del Progetto Divertor Tokamak Test, Frascati (Roma), Italy; ENEA, Fusion and Nuclear Safety Department, C.R. Frascati, (Roma),Italy; INFN-Section of Bari, Italy; Dept. of Electrical Engineering, University of Padova, Italy.
The main purpose of the Divertor Tokamak Test facility (DTT) is to study alternative solutions to mitigate the issue of power exhaust under integrated physics and technical conditions relevant for ITER and DEMO. In this framework, the conceptual design of the beamline for the DTT Neutral Beam Heating system is here summarized, with a particular focus on the technical solutions adopted to fulfill the requirements and maximize beamline performances. The proposed system features a beamline providing deuterium neutrals (D0) with an energy of 510 keV and an injected power of 10 MW. Various design options were considered, and a comprehensive set of simulations was carried out using several physics and engineering codes to drive the choice of the most suitable design options and optimize them, aiming at finding a good compromise among different design requirements. These simulations mainly regard the efficiency of the main processes, the optics of the beam, the physics reactions along the beamline (stripping, charge-exchange and ionization), the thermo-mechanical behaviour of the acceleration grids and the coupling between the beam and the plasma in the tokamak chamber. This paper describes the design of the main components of the injector for the DTT NBI system, i.e. ion source, accelerator, beam line components and vacuum vessel, explaining the motivations for the main design choices.
29th IEEE Symposium on Fusion Engineering (SOFE-2021), Virtual Conference, 12-16 December 2021
Beamlines, DTT, Neutral Beam Injector
Murari Andrea, Fincato Michele, Granucci Gustavo, Grando Luca, Recchia Mauro, Agostinetti Piero, Dalla Palma Mauro
CNR institutes
External links
OAI-PMH: Dublin Core
OAI-PMH: Mods
OAI-PMH: RDF
URL: https://uta.engineering/ppcsofe2021/_documents/sofe-program-revised-1128.pdf
External IDs
CNR OAI-PMH: oai:it.cnr:prodotti:464824