We derive a residual based a posteriori error estimate for the outer normal flux of approximations to the diffusion problem with variable coefficient. By analyzing the solution of the adjoint problem, we show that error indicators in the bulk may be defined to be of higher order than those close to the boundary, which leads to more economic meshes. The theory is illustrated with some numerical examples.
An a posteriori error estimate of the outer normal derivative using dual weights
S Bertoluzza;
2022
Abstract
We derive a residual based a posteriori error estimate for the outer normal flux of approximations to the diffusion problem with variable coefficient. By analyzing the solution of the adjoint problem, we show that error indicators in the bulk may be defined to be of higher order than those close to the boundary, which leads to more economic meshes. The theory is illustrated with some numerical examples.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_467362-doc_201091.pdf
solo utenti autorizzati
Descrizione: An a posteriori error estimate of the outer normal derivative using dual weights
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.88 MB
Formato
Adobe PDF
|
2.88 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
postprint.pdf
accesso aperto
Descrizione: An a posteriori error estimate of the outer normal derivative using dual weights
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
2.91 MB
Formato
Adobe PDF
|
2.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.