We address the issue of designing robust stabilization terms for the nonconforming virtual element method. To this end, we transfer the problem of defining the stabilizing bilinear form from the elemental nonconforming virtual element space, whose functions are not known in closed form, to the dual space spanned by the known functionals providing the degrees of freedom. By this approach, we manage to construct different bilinear forms yielding optimal or quasi-optimal stability bounds and error estimates, under weaker assumptions on the tessellation than the ones usually considered in this framework. In particular, we prove optimality under geometrical assumptions allowing a mesh to have a very large number of arbitrarily small edges per element. Finally, we numerically assess the performance of the VEM for several different stabilizations fitting with our new framework on a set of representative test cases.
Stabilization of the nonconforming virtual element method
S Bertoluzza
;G Manzini;M Pennacchio;D Prada
2022
Abstract
We address the issue of designing robust stabilization terms for the nonconforming virtual element method. To this end, we transfer the problem of defining the stabilizing bilinear form from the elemental nonconforming virtual element space, whose functions are not known in closed form, to the dual space spanned by the known functionals providing the degrees of freedom. By this approach, we manage to construct different bilinear forms yielding optimal or quasi-optimal stability bounds and error estimates, under weaker assumptions on the tessellation than the ones usually considered in this framework. In particular, we prove optimality under geometrical assumptions allowing a mesh to have a very large number of arbitrarily small edges per element. Finally, we numerically assess the performance of the VEM for several different stabilizations fitting with our new framework on a set of representative test cases.File | Dimensione | Formato | |
---|---|---|---|
prod_467365-doc_201089.pdf
solo utenti autorizzati
Descrizione: Stabilization of the nonconforming virtual element method
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
prod_467365-doc_201090.pdf
accesso aperto
Descrizione: Stabilization of the nonconforming virtual element method
Tipologia:
Documento in Pre-print
Licenza:
Altro tipo di licenza
Dimensione
989.54 kB
Formato
Adobe PDF
|
989.54 kB | Adobe PDF | Visualizza/Apri |
CAMWA_2021_PostPrint.pdf
Open Access dal 22/10/2023
Descrizione: Stabilisation of the non conforming virtual element method
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.