We address the issue of designing robust stabilization terms for the nonconforming virtual element method. To this end, we transfer the problem of defining the stabilizing bilinear form from the elemental nonconforming virtual element space, whose functions are not known in closed form, to the dual space spanned by the known functionals providing the degrees of freedom. By this approach, we manage to construct different bilinear forms yielding optimal or quasi-optimal stability bounds and error estimates, under weaker assumptions on the tessellation than the ones usually considered in this framework. In particular, we prove optimality under geometrical assumptions allowing a mesh to have a very large number of arbitrarily small edges per element. Finally, we numerically assess the performance of the VEM for several different stabilizations fitting with our new framework on a set of representative test cases.

Stabilization of the nonconforming virtual element method

S Bertoluzza
;
G Manzini;M Pennacchio;D Prada
2022

Abstract

We address the issue of designing robust stabilization terms for the nonconforming virtual element method. To this end, we transfer the problem of defining the stabilizing bilinear form from the elemental nonconforming virtual element space, whose functions are not known in closed form, to the dual space spanned by the known functionals providing the degrees of freedom. By this approach, we manage to construct different bilinear forms yielding optimal or quasi-optimal stability bounds and error estimates, under weaker assumptions on the tessellation than the ones usually considered in this framework. In particular, we prove optimality under geometrical assumptions allowing a mesh to have a very large number of arbitrarily small edges per element. Finally, we numerically assess the performance of the VEM for several different stabilizations fitting with our new framework on a set of representative test cases.
2022
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Dual norms
Stabilization
Polygonal meshs
Nonconforming Galerkin method
Virtual element method
File in questo prodotto:
File Dimensione Formato  
prod_467365-doc_201089.pdf

solo utenti autorizzati

Descrizione: Stabilization of the nonconforming virtual element method
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_467365-doc_201090.pdf

accesso aperto

Descrizione: Stabilization of the nonconforming virtual element method
Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 989.54 kB
Formato Adobe PDF
989.54 kB Adobe PDF Visualizza/Apri
CAMWA_2021_PostPrint.pdf

Open Access dal 22/10/2023

Descrizione: Stabilisation of the non conforming virtual element method
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/429119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact