Predicting the final outcome of an ongoing process instance is a key problem in many real-life contexts. This problem has been addressed mainly by discovering a prediction model by using traditional machine learning methods and, more recently, deep learning methods, exploiting the supervision coming from outcome-class labels associated with historical log traces. However, a supervised learning strategy is unsuitable for important application scenarios where the outcome labels are known only for a small fraction of log traces. In order to address these challenging scenarios, a semi-supervised learning approach is proposed here, which leverages a multi-target DNN model supporting both outcome prediction and the additional auxiliary task of next-activity prediction. The latter task helps the DNN model avoid spurious trace embeddings and overfitting behaviors. In extensive experimentation, this approach is shown to outperform both fully-supervised and semi-supervised discovery methods using similar DNN architectures across different real-life datasets and label-scarce settings.
Semi-Supervised Discovery of DNN-Based Outcome Predictors from Scarcely-Labeled Process Logs
Francesco Folino;Gianluigi Folino;Massimo Guarascio;Luigi Pontieri
2022
Abstract
Predicting the final outcome of an ongoing process instance is a key problem in many real-life contexts. This problem has been addressed mainly by discovering a prediction model by using traditional machine learning methods and, more recently, deep learning methods, exploiting the supervision coming from outcome-class labels associated with historical log traces. However, a supervised learning strategy is unsuitable for important application scenarios where the outcome labels are known only for a small fraction of log traces. In order to address these challenging scenarios, a semi-supervised learning approach is proposed here, which leverages a multi-target DNN model supporting both outcome prediction and the additional auxiliary task of next-activity prediction. The latter task helps the DNN model avoid spurious trace embeddings and overfitting behaviors. In extensive experimentation, this approach is shown to outperform both fully-supervised and semi-supervised discovery methods using similar DNN architectures across different real-life datasets and label-scarce settings.File | Dimensione | Formato | |
---|---|---|---|
prod_467939-doc_185702.pdf
solo utenti autorizzati
Descrizione: Semi-Supervised Discovery of DNN-Based Outcome Predictors from Scarcely-Labeled Process Logs
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
826.62 kB
Formato
Adobe PDF
|
826.62 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.