Articolo in rivista, 2022, ENG, 10.1088/1741-4326/ac7535
Citrin, J.; Maeyama, S.; Angioni, C.; Bonanomi, N.; Bourdelle, C.; Casson, F. J.; Fable, E.; Goerler, T.; Mantica, P.; Mariani, A.; Sertoli, M.; Staebler, G.; Watanabe, T.
DIFFER Dutch Inst Fundamental Energy Res, Eindhoven, Netherlands; Eindhoven Univ Technol, Sci & Technol Nucl Fus Grp, Eindhoven, Netherlands; Nagoya Univ, Dept Phys, Nagoya, Aichi, Japan; Max Planck Inst Plasma Phys, Garching, Germany; CEA, IRFM, St Paul Les Durance, France; Culham Sci Ctr, CCFE, Abingdon, Oxon, England; Univ Milano Bicocca, Italy; CNR ISTP - Inst Plasma Sci & Technol, Milan, Italy; Dept Phys Ci Occhialini, CNR, Milan, Italy; Gen Atom, San Diego, CA USA.
Previous studies with first-principle-based integrated modelling suggested that electron temperature gradient (ETG) turbulence may lead to an anti-gyroBohm isotope scaling in JET high-performance hybrid H-mode scenarios. A dedicated comparison study against higher-fidelity turbulence modelling invalidates this claim. Ion-scale turbulence with magnetic field perturbations included, can match the power balance fluxes within temperature gradient error margins. Multiscale gyrokinetic simulations from two distinct codes produce no significant ETG heat flux, demonstrating that simple rules-of-thumb are insufficient criteria for its onset.
Nuclear fusion 62 (8), pp. 086025-1–086025-18
tokamak, gyrokinetics, integrated modelling, multiscale turbulence, reduced order modelling
Mariani Alberto, Mantica Paola
ID: 469064
Year: 2022
Type: Articolo in rivista
Creation: 2022-07-11 16:22:25.000
Last update: 2023-02-07 13:59:09.000
CNR authors
CNR institutes
External links
OAI-PMH: Dublin Core
OAI-PMH: Mods
OAI-PMH: RDF
URL: https://iopscience.iop.org/article/10.1088/1741-4326/ac7535
External IDs
CNR OAI-PMH: oai:it.cnr:prodotti:469064
DOI: 10.1088/1741-4326/ac7535
ISI Web of Science (WOS): 000813908200001
Scopus: 2-s2.0-85133466810