Articolo in rivista, 2022, ENG, 10.1088/1741-4326/ac7535

Integrated modelling and multiscale gyrokinetic validation study of ETG turbulence in a JET hybrid H-mode scenario

Citrin, J.; Maeyama, S.; Angioni, C.; Bonanomi, N.; Bourdelle, C.; Casson, F. J.; Fable, E.; Goerler, T.; Mantica, P.; Mariani, A.; Sertoli, M.; Staebler, G.; Watanabe, T.

DIFFER Dutch Inst Fundamental Energy Res, Eindhoven, Netherlands; Eindhoven Univ Technol, Sci & Technol Nucl Fus Grp, Eindhoven, Netherlands; Nagoya Univ, Dept Phys, Nagoya, Aichi, Japan; Max Planck Inst Plasma Phys, Garching, Germany; CEA, IRFM, St Paul Les Durance, France; Culham Sci Ctr, CCFE, Abingdon, Oxon, England; Univ Milano Bicocca, Italy; CNR ISTP - Inst Plasma Sci & Technol, Milan, Italy; Dept Phys Ci Occhialini, CNR, Milan, Italy; Gen Atom, San Diego, CA USA.

Previous studies with first-principle-based integrated modelling suggested that electron temperature gradient (ETG) turbulence may lead to an anti-gyroBohm isotope scaling in JET high-performance hybrid H-mode scenarios. A dedicated comparison study against higher-fidelity turbulence modelling invalidates this claim. Ion-scale turbulence with magnetic field perturbations included, can match the power balance fluxes within temperature gradient error margins. Multiscale gyrokinetic simulations from two distinct codes produce no significant ETG heat flux, demonstrating that simple rules-of-thumb are insufficient criteria for its onset.

Nuclear fusion 62 (8), pp. 086025-1–086025-18

Keywords

tokamak, gyrokinetics, integrated modelling, multiscale turbulence, reduced order modelling

CNR authors

Mariani Alberto, Mantica Paola

CNR institutes

ISTP – Istituto per la Scienza e Tecnologia dei Plasmi

ID: 469064

Year: 2022

Type: Articolo in rivista

Creation: 2022-07-11 16:22:25.000

Last update: 2023-02-07 13:59:09.000

External IDs

CNR OAI-PMH: oai:it.cnr:prodotti:469064

DOI: 10.1088/1741-4326/ac7535

ISI Web of Science (WOS): 000813908200001

Scopus: 2-s2.0-85133466810