In this paper, we propose an evaluation of a Transformer-based punctuation restoration model for the Italian language. Experimenting with a BERT-base model, we perform several fine-tuning with different training data and sizes and tested them in an in- and cross-domain scenario. Moreover, we conducted an error analysis of the main weaknesses of the model related to specific punctuation marks. Finally, we test our system either quantitatively and qualitatively, by offering a typical task-oriented and a perception-based acceptability evaluation.

Punctuation Restoration in Spoken Italian Transcripts with Transformers

Miaschi A;Ravelli AA;Dell'Orletta F
2022

Abstract

In this paper, we propose an evaluation of a Transformer-based punctuation restoration model for the Italian language. Experimenting with a BERT-base model, we perform several fine-tuning with different training data and sizes and tested them in an in- and cross-domain scenario. Moreover, we conducted an error analysis of the main weaknesses of the model related to specific punctuation marks. Finally, we test our system either quantitatively and qualitatively, by offering a typical task-oriented and a perception-based acceptability evaluation.
2022
Istituto di linguistica computazionale "Antonio Zampolli" - ILC
nlp
transformer models
puncutation restoration
File in questo prodotto:
File Dimensione Formato  
978-3-031-08421-8-2.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 567.28 kB
Formato Adobe PDF
567.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/443056
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact