Abstract in atti di convegno, 2022, ENG

From Human Perception and Action Recognition to Causal Understanding of Human-Robot Interaction in Industrial Environments

Stefano Ghidoni; Matteo Terreran; Daniele Evangelista; Emanuele Menegatti; Christian Eitzinger; Enrico Villagrossi; Nicola Pedrocchi; Nicola Castaman; Marcin Malecha; Sariah Mghames; Luca Castri; Marc Hanheide; Nicola Bellotto;

UNIPD; Profactor; CNR-STIIMA; ITR; DLR;

Human-robot collaboration is migrating from lightweight robots in laboratory environments to industrial applications, where heavy tasks and powerful robots are more common. In this scenario, a reliable perception of the humans involved in the process and related intentions and behaviors is fundamental. This paper presents two projects investigating the use of robots in relevant industrial scenarios, providing an overview of how industrial human-robot collaborative tasks can be successfully addressed.

Convegno Nazionale CINI sull'Intelligenza Artificiale, Torino, 09-11/02/2022

Keywords

Human-robot cooperation, behaviour recognition, body pose estimation, human action recognition, cooperative production

CNR authors

Pedrocchi Nicola, Villagrossi Enrico

CNR institutes

STIIMA – Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato

ID: 474166

Year: 2022

Type: Abstract in atti di convegno

Creation: 2022-11-28 18:12:30.000

Last update: 2023-04-27 15:54:30.000

External links

OAI-PMH: Dublin Core

OAI-PMH: Mods

OAI-PMH: RDF

External IDs

CNR OAI-PMH: oai:it.cnr:prodotti:474166