Articolo in rivista, 2022, ENG, 10.3390/biom12081142

ADAR2 Protein Is Associated with Overall Survival in GBM Patients and Its Decrease Triggers the Anchorage-Independent Cell Growth Signature

Cesarini, Valeriana; Silvestris, Domenico Alessandro; Galeano, Federica; Tassinari, Valentina; Martini, Maurizio; Locatelli, Franco; Gallo, Angela

Bambino Gesu Children Hosp; Natl Res Council Italy CNR; Sapienza Univ Rome; Univ Messina; Univ Cattolica Sacro Cuore; Sapienza Univ Rome

Background: Epitranscriptomic mechanisms, such as A-to-I RNA editing mediated by ADAR deaminases, contribute to cancer heterogeneity and patients' stratification. ADAR enzymes can change the sequence, structure, and expression of several RNAs, affecting cancer cell behavior. In glioblastoma, an overall decrease in ADAR2 RNA level/activity has been reported. However, no data on ADAR2 protein levels in GBM patient tissues are available; and most data are based on ADARs overexpression experiments. Methods: We performed IHC analysis on GBM tissues and correlated ADAR2 levels and patients' overall survival. We silenced ADAR2 in GBM cells, studied cell behavior, and performed a gene expression/editing analysis. Results: GBM tissues do not all show a low/no ADAR2 level, as expected by previous studies. Although, different amounts of ADAR2 protein were observed in different patients, with a low level correlating with a poor patient outcome. Indeed, reducing the endogenous ADAR2 protein in GBM cells promotes cell proliferation and migration and changes the cell's program to an anchorage-independent growth mode. In addition, deep-seq data and bioinformatics analysis indicated multiple RNAs are differently expressed/edited upon siADAR2. Conclusion: ADAR2 protein is an important deaminase in GBM and its amount correlates with patient prognosis.

Biomolecules 12 (8)

Keywords

ADAR2, cancer, RNA editing, anchorage-independent growth, PTPX3, ADAM12

CNR authors

Cesarini Valeriana

CNR institutes

ID: 486196

Year: 2022

Type: Articolo in rivista

Creation: 2023-09-11 14:39:40.000

Last update: 2023-09-11 14:39:40.000

External links

OAI-PMH: Dublin Core

OAI-PMH: Mods

OAI-PMH: RDF

DOI: 10.3390/biom12081142

External IDs

CNR OAI-PMH: oai:it.cnr:prodotti:486196

DOI: 10.3390/biom12081142

ISI Web of Science (WOS): 000847213000001