G. Zanetti, A. Carlotto, L.T. N. Tran, A. Szczurek, B. Babiarczuk, O. Sayginer, S. Varas, J. Krzak, O. S. Bursi, D. Zonta, A. Lukowiak, G. C. Righini, M. Ferrari, G. Baldi, M. Bonomo, S. Galliano, C. Barolo, S. M. Pietralunga, A. Chiasera
G. Zanetti1,2 , A. Carlotto1,3, L.T. N. Tran1,4,5, A. Szczurek1, B. Babiarczuk6, O. Sayginer7, S. Varas1, J. Krzak6, O. S. Bursi8,1, D. Zonta8,1, A. Lukowiak9, G. C. Righini10, M. Ferrari1, G. Baldi2, M. Bonomo11, S. Galliano11, C. Barolo11, S. M. Pietralunga3, A. Chiasera1 1IFN-CNR, CSMFO Lab and FBK Photonics Unit, Trento; 2Department of Physics, University of Trento; 3IFN-CNR, Milano; 4Dept. of Physics, Politecnico di Milano; 5Dept. of Materials Technology, Faculty of Applied Sciences, HCMC University of Technology and Education; 6Dept. of Mechanics, Materials and Biomedical Engineering, Wroclaw University of Science and Technology; 7CBI and TranslaTUM, TUM; 8DICAM, University of Trento; 9INTIBS, PAS; 10IFAC-CNR, MiPLab; 11Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre,University of Turin;
Thin-film optics is a key technology for the fabrication of miniaturized photonic devices, spanning from optical waveguides and photonic-integrated-circuits for optical signal processing, to multi-layered resonant structures and cavities for the confinement and spectral selection of the optical field. Active optical waveguides and photonic crystals are among the most versatile examples. One further step to add versatility to thin-film photonic structures involves the use of flexible materials. In fact, by adding mechanical flexibility to the rigid photonic systems, the range of applications greatly expands. However, passing from rigid to flexible substrates requires the development of suitable fabrication protocols, to preserve the optical and spectroscopic properties of the systems under mechanical deformation. We present the RF-sputtering fabrication of 1D photonic crystals and active Er3+ planar waveguides deposited on polymers and ultrathin flexible glass substrates. The structures deposited on ultrathin flexible glass show interesting results in terms of both optical and mechanical properties, making RF-sputtering a promising and scalable technique to fabricate flexible photonic devices [1,2]. Moreover, we report on the spectroscopic study of a 1D photonic crystal, fabricated via RF-sputtering on a flexible thermosetting polymer, in different bending conditions. Acknowledgements: This research is supported by the projects: FESR-PON 2014-2020 BEST4U ARS01_00519; CNR-PAS "Flexible Photonics" (2020-2022); NAWA PPN/IWA/2018/1/00104; MIUR-'Departments of Excellence' L 232/2016; ERC-H2020 PAIDEIA GA 816313; "nuovi Concetti, mAteriali e tecnologie per l'iNtegrazione del fotoVoltAico negli edifici in uno scenario di generazione diffuSa" CANVAS and NAWA-MAECI Canaletto (2022-2023). References: [1] A.Carlotto, et.al., Proc. SPIE 12142, pp. 1214206 (2022); doi:10.1117/12.2621281 [2] A.Carlotto, et.al., Ceramics International, (2023); doi:10.1016/j.ceramint.2023.03.012
XXI B-MRS Meeting - SBPMat, Maceió-AL, Brazil, October 1st to 5th, 2023
flexible photonics, glasses, rf-sputtering, planar optical waveguides, 1D photonic crystals
Ferrari Maurizio, Righini Giancarlo, Zonta Daniele, Tran Lam Thi Ngoc, Carlotto Alice, Bursi Oreste, Chiasera Alessandro, Pietralunga Silvia Maria, Varas Stefano
ID: 487684
Year: 2023
Type: Presentazione
Creation: 2023-10-23 10:11:17.000
Last update: 2024-01-29 08:59:42.000
CNR institutes
External IDs
CNR OAI-PMH: oai:it.cnr:prodotti:487684