An efficient yet accurate procedure was developed for the seismic assessment of reinforced concrete (RC) bridges subject to chloride-induced corrosion. The procedure involves using incremental modal pushover analysis to assess corroded bridges as an alternative and less computationally demanding approach to non-linear dynamic analysis. A multi-physics finite-element analysis is performed to evaluate the effects of chloride-induced corrosion on bridge columns. In doing so, chloride ingress in concrete is numerically simulated as a diffusion process by considering the effects of temperature, humidity, corrosion-induced cover cracking and concrete aging. The estimated chloride concentration is then employed to evaluate the corrosion current density, from which the effects of corrosion on reinforcement, cracked cover concrete, confinement and plastic hinge length can be determined for subsequent non-linear static analysis. A case study of a typical bridge structure is presented. The proposed procedure can be used to assess the seismic performance of irregular RC bridges exposed to severe corrosive environments.

Seismic assessment of corroded concrete bridges using incremental modal pushover analysis

Fiorentino Gabriele;
2022

Abstract

An efficient yet accurate procedure was developed for the seismic assessment of reinforced concrete (RC) bridges subject to chloride-induced corrosion. The procedure involves using incremental modal pushover analysis to assess corroded bridges as an alternative and less computationally demanding approach to non-linear dynamic analysis. A multi-physics finite-element analysis is performed to evaluate the effects of chloride-induced corrosion on bridge columns. In doing so, chloride ingress in concrete is numerically simulated as a diffusion process by considering the effects of temperature, humidity, corrosion-induced cover cracking and concrete aging. The estimated chloride concentration is then employed to evaluate the corrosion current density, from which the effects of corrosion on reinforcement, cracked cover concrete, confinement and plastic hinge length can be determined for subsequent non-linear static analysis. A case study of a typical bridge structure is presented. The proposed procedure can be used to assess the seismic performance of irregular RC bridges exposed to severe corrosive environments.
2022
Istituto di Geologia Ambientale e Geoingegneria - IGAG
bridges
concrete structures
corrosion
File in questo prodotto:
File Dimensione Formato  
IMPAcorrosion_paper_round_postprint.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 377.35 kB
Formato Adobe PDF
377.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/451289
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact